浙江新和成特种材料有限公司新和成新 材料研究院项目竣工环境保护验收监测 报告表

建设单位: 浙江新和成特种材料有限公司

编制单位: 浙江新和成特种材料有限公司

二〇二五年十月

建设单位法人代表: (签字)

编制单位法人代表: (签字)

项目负责人:

填表人:

建设单位:

浙江新和成特种材料有限 浙江新和成特种材料有限

编制单位: 公司 (盖章) 公司 (盖章)

电话: 13587348494 电话: 13587348494

传真: 传真: / /

邮编: 312300 邮编: 312300

> 浙江省绍兴市上虞区杭州 浙江省绍兴市上虞区杭州

湾上虞经济技术开发区产 地址: 湾上虞经济技术开发区产 地址:

> 业协同创新中心 业协同创新中心

目录

表一基本情况表	4
表二项目概况	9
表三主要污染源、污染物处理和排放	15
表四建设项目环境影响登记表主要结论及审批部门审批决定	21
表五验收监测质量保证及质量控制	23
表六验收监测内容	40
表七验收监测结果	42
表八验收监测结论	52

附表:建设项目竣工环境保护验收"三同时"登记表

附件1环评批复

附件 2 营业执照

附件 3 排污许可证正本

附件4突发环境事件应急预案备案表

附件5产业协同创新中心污水接纳协议书

附件 6 危废处置协议

附件7验收监测报告

附件8实验室环保制度

附件9专家意见及签到表

附件10其他需要说明的事项

附图 1 项目地理位置图

附图 2 项目平面布置图

附图 3 环保设施竣工公示

附图 4 环保设施调试公示

附图 5 网上公示截图

附图 6 网上申报截图

表一 基本情况表

_ , _ , ,,,	7U-1C							
建设项目名称		新和成新材料研究院项目						
建设单位名称	浙江新和成特种材料有限公司							
建设项目性质		V	∫新建□改扩建	□技改				
建设地址	浙江省绍	兴市上虞区杭州	州湾上虞经济技	支术开发区产业	业协同创新中心			
主要产品名称			新材料研究	Ž				
设计生产能力			/					
实际生产能力			/					
建设项目 环评时间	2021	年3月	开工建设 时间	2022年3月				
调试时间	,	月-2025 年 12 月	验收现场 监测时间	2025年4月15日-16日 2025年6月4日-5日				
环评登记表 审批部门	绍兴市生	上态环境局	环评登记表 编制单位	浙江省环境科技有限公司				
环保设施 设计单位		实验实业有限 公司	环保设施 施工单位	上海瀚广实验实业有限公司				
总投资	6500 万元	环保投资总 概算	55 万元	环保投资 占总投资 比例	0.85%			
实际总投资 6700 万元		实际 环保投资	100 万元	环保投资 占总投资 比例	1.49%			

1.1 国家及地方环境保护法律法规

- (1) 《中华人民共和国环境保护法》(2014.4.24 修订, 2015.1.1 施行);
- (2)《中华人民共和国环境影响评价法》(2018.12.29 修订,施行);

验收 监测 依据

- (3)《中华人民共和国大气污染防治法》(2018.10.26修订,施行);
- (4) 《中华人民共和国水污染防治法》(2017.6.27 修正, 2018.1.1 施行);
- (5) 《中华人民共和国土壤污染防治法》(2018.8.31 发布, 2019.1.1 实施)
- (6) 《中华人民共和国噪声污染防治法》(2021.12.24 发布, 2022.6.5 施行)
- (7) 《中华人民共和国固体废物污染环境防治法》(2020.4.29 修订, 2020.9.1

施行);

- (8) 《建设项目环境保护管理条例(2017年修订)》(2017.7.16发布; 2017.10.1 施行);
- (9) 《建设项目竣工环境保护验收暂行办法》(国环规环评[2017]4号);
- (10) 《浙江省生态环境保护条例》(2022.5.27 发布, 2022.8.1 施行);
- (11) 《排污许可管理条例》(2021.1.24 发布, 2021.3.1 施行)
- (12) 《排污许可管理办法》(2024.4.1 发布, 2024.7.1 施行)。

1.2 技术规范

- (1) 《浙江省建设项目环境保护管理办法》(2021.2.10 起施行);
- (2) 《建设项目竣工环境保护验收技术指南污染影响类》(2018.5.16 起施行);
- (3) 《浙江省建设单位开展竣工环境保护验收工作指引》;
- (4) 《污染影响类建设项目重大变动清单(试行)》(2020.12.13 施行);
- (5) 《污水监测技术规范》(HJ91.1-2019);
- (6) 《固定源废气监测技术规范》(HJ/T397-2007);
- (7) 《环境空气质量手工监测技术规范》(HJ194-2017)。

1.3 主要环保技术文件及相关批复文件

- (1)《浙江新和成特种材料有限公司新和成新材料研究院项目环境影响登记表》, 2021.3;
- (2) 《绍兴市上虞区建设项目环境影响评价文件备案表》,虞环建备[2021]18 号,2021.3;
- (3) 企业排污许可证(编号: 91330604589046625U001P), 2024.5;
- (4) 绍兴市中测检测技术股份有限公司验收监测报告 (SZCJ2025(验)字第 04005号、SZCJ2025(验)字第 04005-1号);
- (5) 其他材料。

验监评标准标号级收测价标、标号级

(1) 废水

本项目运营期产生的废水主要为树脂聚合实验和分析检验废水,挤出过程中产生的循环冷却废水,废气处理废水、设备及地面清洗废水以及生活污水。项目废水由产业协同创新中心配套污水处理装置预处理后纳入园区污水管网,由绍兴市上虞区水处理发展有限责任公司集中处理,纳管标准执行《污水综合排放标准》(GB8978-1996)中的(新扩改)三级标准,其中氨氮执行浙江省地方标准《工

别、 限值

业企业废水氮、磷污染物间接排放限值》(DB33/887-2013)中"其他企业"规定的 35mg/L 限值要求,总氮参照《污水排入城镇下水道水质标准》中 B 级限值70mg/L 进行控制。具体见下表 1-1。

绍兴市上虞区水处理发展有限责任公司排放标准来自该公司排污许可证(许可证编号: 91330604742925491Y001R)中 DW002 工业污水排放口许可排放浓度限值,排污许可证中未体现的污染物,其标准执行《污水综合排放标准》(GB/T31962-2015)中一级标准,后文氨氮排环境总量按照污水处理厂环评要求的《污水综合排放标准》(GB/T31962-2015)中一级标准 15mg/L 计算。具体见指标详见下表 1-2。

		• •
序号	指标	纳管标准
1	pН	6~9
2	COD_cr	500
3	SS	400
4	NH ₃ -N	35
5	TN	70
6	TP	8
7	石油类	20

表 1-1 污水排放标准 单位:除 pH 外为 mg/L

注: 括号内数值为每年11月1日至次年3月31日执行。

序号	污染物名称	绍兴市上虞区水处理发展有限责任公司国家排污许可证
		(91330604742925491Y001R)许可排放浓度限值标准
1	pH(无量纲)	6~9
2	SS	59.5
3	$\mathrm{COD}_{\mathrm{Cr}}$	80

13.36

25.3

0.5

2.94

表 1-2 污水排环境标准 单位: pH 除外均为 mg/L

(2) 废气

5

6

NH₃-N

TN

TP

石油类

本项目废气主要包括树脂聚合实验废气和分析检验废气、树脂改性实验粉尘、挤出和注塑废气等。树脂聚合实验和分析检验由于涉及较多有机物,因此因子较多,主要有乙醇、NMP、苯酚等,挤出和注塑废气污染因子以非甲烷总烃、

粉尘为主。

废气排放执行《大气污染物综合排放标准》(GB16297-1996)表 2 中的二级标准,氯苯类参照执行《合成树脂工业污染物排放标准》(GB31572-2015)表 5 标准,其他因子其有组织排放浓度采用多介质环境目标值估算方法计算,排放速率根据《制定地方大气污染物排放标准的技术方法》(GB/T3840-91)中公式进行计算;无组织监控点浓度按环境质量标准的 4 倍计。本项目涉及大气污染物排放标准如表 1-3 所示。恶臭污染物排放执行《恶臭污染物排放标准》(GB14554-93)中相应的二级标准值,具体如表 1-4 所示。

最高允许排放 15m 排气筒最高允 无组织排放监控 污染物 浓度 许排放速度 引用标准 浓度限值(mg/m³) $(mg/m^3)(2)$ (kg/h)① 颗粒物 120 3.5 1.0 《大气污染物综合排 甲醇 190 12 5.1 放标准》 1.2 硫酸雾 45 1.5 (GB16297-1996) 表 2 中二级标准 非甲烷总烃 120 10 4.0 《合成树脂工业污染 物排放标准》 氯苯类 20 (GB31572-2015) 表 5 标准 乙醇 317.7 15.00 20 硝酸 1.20 1.6 甲酸 49.5 0.19 0.252 3.77 5.03 **NMP** 176.13 1-氯萘 69.30 1.48 1.98 《制定地方大气污染 苯酚 0.41 物排放标准的技术方 14.27 0.31 法》(GB/T3840-91) 四氯乙烷 11.25 0.24 0.32 邻甲酚 5.45 0.12 0.16 72.00 二氯甲烷 1.54 2.05 2.63 乙腈 122.85 3.51 己二酸 85.50 2.44 1.83

表 1-3 大气污染物排放浓度限值

注:①排放速率执行 GBZ2.1-2007 的污染物最高允许排放浓度参照 TWA 控制值,无组织监控浓度取环境质量标准中小时浓度值的 4 倍;排放速率根据《制定地方大气污染物排放标准的技术方法》(GB/T3840-91)中相关公式进行测算得到,具体如下:

Q=CmRKe

式中: Q----排气筒允许排放率;

Cm----标准浓度限值;

R----排放系数,按浙江省地区、15m排放高度要求取值为6;

Ke----地区性经济技术系数,取值为0.5。

②DMEG(计算值)参考美国环保局推荐的以健康影响为依据的空气介质排放环境目标值计算模式 DMEGAH(ug/m3)=45×LD50; LD50 为大鼠经口半数致死量(mg/kg)。

表 1-4 恶臭污染物排放标准

序号	污染物名称	排气筒高度(m)	最高允许排放速率	无组织排放监控浓度限值
1	臭气浓度	15	2000(无量纲)	20(无量纲)

(3) 噪声

营运期项目四侧厂界噪声执行《工业企业厂界环境噪声排放标准》 (GB12348-2008)中的3类标准,。具体见表1-5。

表 1-5 工业企业厂界环境噪声排放标准

厂界外声	声环境	本田 田	时段			
功能区	类别	适用厂界 	昼间 (dB(A))	夜间(dB(A))		
3 孝	\$	厂界四周	≤65	≤55		

(4) 固废

固体废物处置依据《固体废物鉴别标准通则》(GB34330-2017)、《国家危险 废物名录(2025 年版)》、《危险废物鉴别标准通则》(GB5085.7-2019)、《一般固体废物分类与代码》(GB/T39198-2020)和《固体废物分类与代码目录》(公告 2024年第 4 号)。

项目产生的一般固体废物贮存、处置执行《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020),其中本项目为采用库房、包装工具(罐、桶、包装袋等)贮存一般工业固体废物过程的污染控制,不适用《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020),其贮存过程应满足相应防渗漏、防雨淋、防扬尘等环境保护要求;危险废物在厂区内暂存执行《危险废物贮存污染控制标准》(GB18597-2023)。

生活垃圾处理参照执行《城市生活垃圾处理及污染防治技术政策》(建城 [2000]120号)和《生活垃圾处理技术指南》(建城[2010]61号)以及国家、省市关于固体废物污染环境防治的法律法规。

表二 项目概况

2.1 工程建设内容

新材料是国家七大战略新兴产业之一,未来发展获得国家政策、经济环境和市场环境等多方面支持,同时也是浙江省重点发展产业,为浙江制造强省建设奠定坚实的基础。浙江新和成特种材料有限公司目前虽然已在材料中间体合成、聚合、改性、纤维纺丝和功能薄膜等新材料领域进行布局,形成了产业集群,在新材料行业影响力初步显现,但是尚未建立一个新材料技术创新平台支撑和带动新材料业务的快速发展。

因此,浙江新和成特种材料有限公司租用杭州湾上虞经济技术开发区产业协同创新中心新材料研发楼,购置相关实验设备,为公司新材料业务的发展规划搭建材料关键中间体合成、高分子聚合、应用加工、纤维纺丝等技术平台和高效挤出、复合材料、纳米粒子等专业实验室,并配套高分子材料检验中心和交流展示功能。目标将新和成新材料研究院建成国内一流、国际领先的现代化新材料研发中心,带动百亿级别新材料产业的发展。

该项目已由上虞区杭州湾上虞经济技术开发区备案进行备案(项目代码: 2019-330604-73-03-053052-000)。并委托浙江省环境科技有限公司编制完成《浙江新和成特种材料有限公司新和成新材料研究院项目环境影响登记表》,绍兴市生态环境局于2021年3月25日对本项目环评登记表进行备案(备案文号: 虞环建备[2021]18号)。

本项目于 2022 年 2 月开工建设,生产设备已到位,与其配套的环保设施也一并配套建成并运行,环保治理设施达到设计要求,符合建设项目环境保护竣工验收监测条件。

浙江新和成特种材料有限公司于 2024 年 5 月 14 日重新申请了排污许可登记(编号: 91330604589046625U001P)。本项目于 2025 年 3 月 15 日竣工。2025 年 4 月,本项目竣工环保验收工作正式开始调试,并进行了"三同时"环保设施竣工和调试公示(详见附图 4、附图 5),根据国家、浙江省有关建设项目竣工环境保护验收的要求,按照《浙江省建设单位开展竣工环境保护验收工作指引》、《建设项目竣工环境保护验收技术指南污染影响类》于 2025 年 3 月编制了该项目竣工环境保护验收监测方案,并委托绍兴市中测检测技术股份有限公司于 2025 年 4 月 15 日-16 日对项目相关污染物进行监测,监测期间生产工况详见章节 7.1。本项目自立项至调试过程中均无环境投诉、违法或处罚记录等。

本项目污染物总量控制为废水量 11100t/a、CODc0.888t/a (纳管量 7.980t/a)、

NH₃-N0.167t/a(纳管量 0.396t/a)、烟粉尘 0.008t/a、VOCs0.039t/a。

(1) 项目概况

项目实际建设情况详见表 2-1。

表 2-1 项目实际建设情况一览表

类别		环评审批情况	实际建设情况
项目名称		浙江新和成特种材料有限公司新和成新材料研究院 项目	与环评审批一致
建	设单位	浙江新和成特种材料有限公司	与环评审批一致
建	设性质	新建	与环评审批一致
主要技	术经济指标	项目总投资 6500 万元, 其中环保投资总概算 55 万元。	实际投资 6700 万元, 其中环保投资 100 万 元。
	重型实验 室和分析 实验室	一层:改性实验区、注塑实验区、型材实验区、纺 丝实验区、连续纤维改性增强实验区、公用工程区、 材料检测区、专用分析室、气瓶间;	与环评审批一致
主体 工程	检测中心、 聚合实验 室和办公 室	三层: 机械性能分析室、热性能分析室、老化分析室、电性能分析室、阻燃性能分析室、光谱/纤维分析室、流变分析室、色谱/质谱分析室、物质特性分析室、PPS 小试实验室、尼龙小试实验室、中间体实验室(2间)、制膜专用实验室。	与环评审批一致
	供水	本项目供水由产业协同创新中心供水系统供给;	与环评审批一致
公用工程	排水	项目废水经与杭州湾上虞经济技术开区产业协同创 新中心相配套的污水处理装置处理达接管标准后, 排入园区污水管网;	与环评审批一致
	供电	采用中心供电设备统一供应。	与环评审批一致
	废水治理	本项目废水收集后进入中心污水处理站处理,经处理达标后纳管排放;	与环评审批一致
环保 工程	废气治理	①树脂改性实验粉尘收集并经布袋除尘装置处理后通过 15m 高排气筒排放; ②树脂聚合实验废气和分析检验废气收集并经活性 炭吸附处理后通过 15m 高排气筒排放; ③挤出、注塑废气收集并经次氯酸钠喷淋处理后通过 15m 高排气筒排放。	与环评审批一致
	固废治理	研发大楼内设置一般固废暂存库及危废暂存库分类 暂存本项目固废。	与环评审批一致
	噪声治理	采用减震、隔音、消声等方式对产生噪音的设备进 行消噪处理。	与环评审批一致

(2) 项目设备清单 由上表可知,除1台共混挤出机取消外,其余设备与环评阶段均一致。 2.2 原辅材料消耗

围内。

本项目实际生产原辅料种类与环评一致, 调试期间用量折算全年总量在环评审批范

2.3 水平衡

2.4 主要工艺流程及产污环节

本项目实际研发工艺与产污环节与原环评一致,具体如下。

- 2.4.1 聚苯硫醚树脂聚合工艺:
- 2.4.2PPA 聚合工艺:
- 2.4.3 树脂改性应用工艺
- 2.4.4PPS 管材成型工艺
- 2.4.5PPS 板材成型工艺
- 2.4.6PPS 单丝挤出拉伸工艺
- 2.4.7PPS 流延膜挤出成型工艺
- 2.4.8PPS 细粉气流研磨工艺

2.5 变动情况

参照《环境保护部办公厅关于印发环评管理中部分行业建设项目重大变动清单的通知》(环办[2015]52号)中"建设项目的性质、规模、地点、生产工艺和环境保护措施五个因素中的一项或一项以上发生重大变动,且可能导致环境影响显著变化(特别是不利环境影响加重)的,界定为重大变动。属于重大变动的应当重新报批环境影响评价文件,不属于重大变动的纳入竣工环境保护验收管理",参照执行《污染影响类建设项目重大变动清单(试行)》(环办环评函[2020]688号),逐条对照该变动情况,具体如下表 2-4:

表 2-4 《污染影响类建设项目重大变动清单(试行)》

类别	序号	重大变动清单内容	对照情况说明	是否涉及 重大变动
性质	1	建设项目开发、使用功能发生变化的。	本项目开发、使用功能未发 生变化。	不涉及
	2	生产、处置或贮存能力增大 30%以上的。	本项目为实验室项目,不涉 及生产、处置或贮存能力。	不涉及
规模	3	生产、处置或储存能力增大,导致废水第 一类污染物排放量增加的。	本项目为实验室项目,不涉 及生产、处置或贮存能力。	不涉及
	4	位于环境质量不达标区的建设项目生产、	本项目为实验室项目,不涉	不涉及

		放量增加的(细颗粒物为二氧化硫、氮氧挥发性有机物;臭氧为氮氧化物、挥发性污染物因子不达标题,	大,导致相应污染物排物不达标区,相应污染机化物、可吸入颖粒物、不达标区,相应污染物生有机物;其他大气、水区,相应污染物为超标区的建设项目生产、处导致污染物排放量增	及生产、处置或贮存能力。	
地点	5		业附近调整(包括总平 不境防护距离范围变化	本项目位于浙江省绍兴市上 虞区杭州湾上虞经济技术开 发区产业协同创新中心,与 环评一致。	不涉及
生产工艺	1 14 阜新下列售形		(1)新增排放污染物种类的(毒性、挥发性降低的除外); (2)位于环境质量不达标区的建设项目相应污染物排放量增加的; (3)废水第一类污染物排放量增加的; (4)其他污染物排放量增加的; (4)其他污染物排放量增加的;	及新增产品品种、生产工 艺、污染物种类。主要原辅	不涉及
	7	物料运输、装卸、贮存方式变化,导致大 气污染物无组织排放量增加 10%及以上 的。		本项目实际物料运输、装卸、 贮存方式均与环评要求一 致,大气污染物无组织排放 量不增加。	不涉及
环境 保护 措施	8	废水、废气污染防治措施变化,导致第6 条中所列情形之一(废气无组织排放改为 有组织排放、污染防治措施强化或改进的 除外)或大气污染物无组织排放量增加 10%及以上的。		本项目实际废水、废气污染防治措施未变化。	不涉及
	9		口;废水由间接排放改 直接排放口位置变化, 加重的。	本项目实际不新增废水直接 排放口,废水间接排放至绍 兴上虞区水处理发展有限公 司处理达标后排放。	不涉及

10	新增废气主要排放口(废气无组织排放改 为有组织排放的除外); 主要排放口排气	本项目实际不新增废气主要 排放口,本项目废气排放口	不涉及
10	为有组织排放的陈外); 王安排放口排气 筒高度降低 10%及以上的。	均为一般排放口。	个砂及
11	噪声、土壤或地下水污染防治措施变化, 导致不利环境影响加重的。	本项目实际噪声、土壤或地 下水污染防治措施无变化。	不涉及
12	固体废物利用处置方式由委托外单位利用 处置改为自行利用处置的(自行利用处置 设施单独开展环境影响评价的除外);固 体废物自行处置方式变化,导致不利环境 影响加重的。	本项目固体废物利用处置方式与环评一致。	不涉及
13	事故废水暂存能力或拦截设施变化,导致 环境风险防范能力弱化或降低的。	与环评和应急预案要求一 致。	不涉及

综上分析,项目不涉及重大变动。

表三 主要污染源、污染物处理和排放

3.1 废水

本项目废水主要有树脂聚合实验和分析检验废水,挤出过程中产生的循环冷却废水,废气处理废水、设备及地面清洗废水以及生活污水等。各股废水收集后进入中心污水处理站,经处理达到《污水综合排放标准》(GB8978-1996)中的(新扩改)三级标准后纳管排入绍兴市上虞区水处理发展有限责任公司。

中心污水处理站设计处理能力为 120m³/d, 目前已建成并投入运行, 污水处理工艺 流程见图 3.1-1。

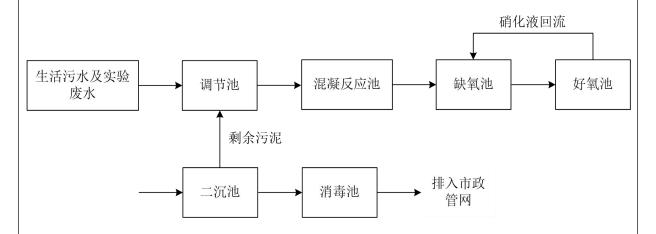
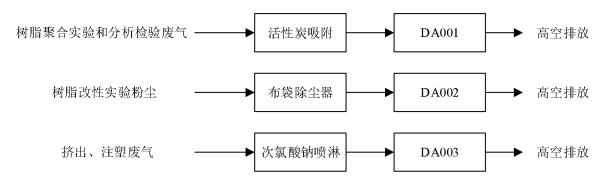


图 3.1-1 中心污水处理站工艺流程图

工艺说明:生活污水及实验废水经管网收集后,首先经格栅井除去大颗粒悬浮物及其他杂质,然后进入调节池,通过泵提升后进入生化处理组合池,通过微生物的厌氧、兼氧、好氧作用,去除污水中绝大部分污染物,处理后排入绍兴市上虞区水处理发展有限责任公司。

图 3.1-2 污水排放口


3.2 废气

本项目运营过程中产生的废气主要为树脂聚合实验废气、分析检验废气,树脂改性实验粉尘,挤出、注塑废气等。废气来源及处理方式详见表 3.2-1。

废气名 称	产生工序	污染物种类	排放 形式	治理设 施处理 工艺	处理 设施 数量 (套)	排气筒 编号	排气 筒高 度 (m)	排放 去向
树脂聚 合实验 和分析 检验废 气	聚苯硫醚树脂、PPA聚合反应及后处理过程、分析检验过程	NMP、对二氯苯、1- 氯萘、六氟异丙醇、 苯酚、四氯乙烷、邻 甲酚、甲酸、浓硝酸、 浓硫酸、二氯甲烷、 乙醇、甲醇、乙腈、 非甲烷总烃、己二 胺、己二酸、对苯二 甲酸、间苯二甲酸	有组织	活性炭吸附	1	DA001	20	大气 环境
树脂改 性实验 粉尘	实验中的投料、混合、切 粒等工序	颗粒物	有组 织	布袋除尘	1	DA002	20	
挤出、注 塑废气	挤出及注塑 工序	非甲烷总烃	有组 织	次氯酸 钠喷淋	1	DA003	20	

表 3.2-1 废气来源及处理方式

废气处理工艺流程见下图。

3.3 固废

本项目一般固体废物主要有造粒及注塑边角料、收集粉尘、普通废包装材料; 危险 废物主要有有机废液、废活性炭、沾有化学品的包装材料、废机油。

本项目设有面积约 15 平方米的危险废物储存间,危险废物储存间防风、防雨、防晒,地面硬化处理,标志标识和危险废物管理制度上墙。项目一般工业固废在一般固废仓库暂存,一般固废委托物资单位回收处置。有机废液委托浙江春晖固废处置有限公司处置;废活性炭委托浙江新和成药业有限公司处置;沾有化学品的包装材料委托浙江育隆环保科技有限公司处置;废机油委托杭州大地海洋环保股份有限公司处置。

3.4 噪声

本项目室内噪声源主要为挤出机、注塑机、研磨设备,以及各类泵、风机等运行产 生的噪声。

本项目选用低噪声设备,并对主要噪声设备底座安装减振装置或减振垫;主要噪声设备尽量布置在厂区中央位置,以减少对周围环境的影响;日常生产中加强设备的日常维修与更新,使生产设备处于正常工况,以降低噪声,减少对周围环境的影响。

3.5 其它环境保护措施

3.5.1 环境风险防范措施

浙江新和成特种材料有限公司已于 2025 年 6 月修订了突发环境事件应急预案,新的应急预案包含了本项目内容,本项目成立相应的污染事故应急领导小组,明确职责和分工,制定了相应的污染事故应急处置措施,并配备必要的应急设施和物资。企业突发环境事件应急预案于 2025 年 6 月 23 日由绍兴市生态环境局上虞分局修订备案(备案编号: 330604-2025-87-H)。

本项目依据应急处置的需求,建立了以公司自身应急物资储备为主,社会救援物资为辅的物资保障体系,并建立了应急物资动态管理制度。公司内现有应急设施与物资及还需配备应急物资见下表 3.5-1。

	衣 3.5-1 应急物贷袋备消率									
序号	装备名称	型号	性能	数量	存放地点	运输和使用 条件	管理责任人			
1	各实验室应急柜	1	应急物品	5 个	实验室	,	实验室			
1	付关巡至巡芯他	/	巡忌初明	3 1	大 孤王	/	负责人			
2	消防头盔	PTK-B/A	防冲击、防腐蚀	12 顶	消防值班室	消防车	王祖汉			
	刊例 大量	I IK-D/A	的4.1. 四 / 的 図 区	12 7火		刊列十	662066			
3	 消防战斗服	ZFMH-kl	防高温	12 套	消防值班室	消防车	王祖汉			
3	J 相例以十加 ZITVIII		的问価	12 去		刊別十	662066			
4	 消防战斗鞋	RJX-25A	耐磨、阻燃	12 双	消防值班室	消防车	王祖汉			
7	行的以 工 牲	THE NJA-2JA	101 NE / 15TVW	12 /		刊的十	662066			
5	腰带	FZL-YD	防腐、阻燃	12 根	消防值班室	消防车	王祖汉			
	及山	TZL-TD	M 104 100 100	12 1K	11的 匝处王	相的十	662066			
6	 消防手套	ZD-ST17	防腐、阻燃	12 双	消防值班室	消防车	王祖汉			
0	何例于县 ZD-S117		例 烟 、 阳 然	12 /		刊的十	662066			
7	防爆消防头灯+	TBF901	防爆	5 套	消防值班室	消防车	王祖汉			
,	支架	1 D1 701	1971 /2米	J 云	旧则但如王	刊的十	662066			
8	空气呼吸器	它气呼吸器 C900/C850	防毒	5 套	消防车	消防车	王祖汉			
0	上 [門双伯	C300/C830	り母	3 去	相別十	相例十	662066			

表 3.5-1 应急物资装备清单

9	防化服	霍尼韦尔	防腐、阻燃	2 件	消防车	消防车	王祖汉 662066
10	重型防化服	霍尼韦尔连体	防腐、阻燃	2 件	消防车	消防车	王祖汉 662066
11	医用供氧器	HC-4L	急救	1 套	消防车	消防车	王祖汉 662066
12	6 米金属拉梯	普通型	救助	1 把	消防车	消防车	王祖汉 662066
13	空气呼吸器	C900/C850	防毒	6 套	车间控制楼	消防三轮车	王祖汉 662066
1	班安全绳	8mm/30M	救助	2 根	消防车	消防车	王祖汉 662066
2	65 水带	20/65/20	消防水输送	15 盘	消防车	消防车	王祖汉 662066
3	80 水带	20/80/20	消防水输送	15 盘	消防车	消防车	王祖汉 662066
4	水幕水带	20—65—20	隔热隔烟	3 盘	消防车	消防车	王祖汉 662066
5	屏障水枪	KDK65Z	隔热隔烟	2 支	消防车	消防车	王祖汉 662066
6	带架水枪	QJ32G 折叠式	可折叠、携带方 便	1 支	消防车	消防车	王祖汉 662066
7	自摆炮	PSY—20—ZB	携带方便	1 门	消防车	消防车	王祖汉 662066
8	自摆炮	PSY—35—ZB	携带方便	1 门	消防车	消防车	王祖汉 662066
9	水带挂钩	普通型	方便水带悬挂	10 只	消防车	消防车	王祖汉 662066
10	水带包布	普通型	补漏水带	15 只	消防车	消防车	王祖汉 662066
11	消防斧	普通型	破拆	1 把	消防车	消防车	王祖汉 662066
12	集水器	普通型	消防车加水	1 只	消防车	消防车	王祖汉 662066
13	滤水器	普通型	过滤水	1 只	消防车	消防车	王祖汉 662066
14	吸水管	普通型	消防车加水	1 根	消防车	消防车	王祖汉 662066
15	分水器	FF65	1分3头	2 只	消防车	消防车	王祖汉 662066
16	转换接头	普通型	消防车加水	8 个	消防车	消防车	王祖汉 662066
17	多功能水枪	普通型	冷却灭火	4 把	消防车	消防车	王祖汉 662066

18	车载泡沫吸管	普通型	吸泡沫	1 根	消防车	消防车	王祖汉	
10	十秋色/小双目 	日地空	7久7色7本	1 11%	預別 十	預购 <u>干</u> 	662066	

本应急预案涉及危险化学品单位作业场所的应急物资装备,备用存放在应急器材专用柜(或指定地点),公司各作业场所配备的应急器材专用柜中的应急物资装备详见附表 3.5-2。

GB 30077-2023 规定的应急物资装备 作业场所配备实况 序 物资名称 技术要求或功能要求 配备 存放位置 正压式空 技术性能符合 GB/T 三楼背面卫生间门口 1 套、一楼北面 AM 气瓶 1 2 套 气呼吸器 16556 要求 间一套 技术性能符合 AQ/T 2 化学防护服 三楼北面卫生间门口 2 6107 要求 过滤式防毒 技术性能符合 GB2890 如干 三楼各实验室都有配备 要求 面具 气体浓度检 技术性能符合 AM 脂实验室 8 2 GB12358 要求 测仪 三楼实验室 8、检测中心、一楼应用实验室 手电筒 易燃易爆场所防爆 3 物资清单应符合 大办公内 1 个、检测中心办公室 1 个 急救箱 2 个 6 GBZ1-2010 要求 王伟平 责任人 应急救援器材专用柜管理 联系电话 13587318009

表 3.5-2 作业场所应急器材专用柜应急物资装备资源清单

3.6 环保设施投资及"三同时落实情况"

3.6.1 环保设施投资

该项目实际总投资为 6700 万元,其中环保总投资为 100 万元,占总投资的 1.49%。项目环保投资情况见表 3.6-1。

	7C 010 1 137C117=1170E1=1017C								
序号	项 目	投资	备注						
1	废水 5 依托产业协同创新中心		依托产业协同创新中心。						
2	2 噪声治理 20 车间隔声、设备减震等。								
3	废气	65	布袋除尘设备、活性炭吸附装置、次氯酸钠喷淋装置。						
4	4 固体废弃物处置 10		固废收集、暂存、清运设施						
	合计		占总投资: 1.49%						

表 3.6-1 污染治理措施汇总表

建设单位已按环境影响登记表和环境保护主管部门的要求,在项目建设中采取了一系列的环境保护措施,环保设施建设、运行基本正常,基本执行了"三同时",并落实了

环评建议及环评批复意见要求的污染防治措施。

3.6.2 环保审批手续及"三同时"执行情况

根据国家《建设项目环境保护管理条例》中的有关规定,浙江新和成特种材料有限公司委托浙江省环境科技有限公司编制完成《浙江新和成特种材料有限公司新和成新材料研究院项目环境影响登记表》,该环评报告于 2021 年 3 月 25 日通过绍兴市生态环境局审批(虞环建备[2021]18 号)。

项目环境保护处理设施与主体工程同时设计、同时施工、同时投入使用,并按照要求进行日常维护,较好地执行了"三同时"制度。

表四 建设项目环境影响登记表主要结论及审批部门审批决定

4.1 环评登记表主要结论

环评登记表污染防治措施汇总见表 4-1。

表 4-1 环评登记表污染防治措施汇总表

1.33	I.B. 5.7				
内容 要素	排放口(编 号、名称)/ 污染源	污染物 项目	环境保护措施	落实情况	
大气污染 物	树脂聚合实 验和分析检 验废气	NMP、1-氯 萘、六氟异 丙醇、苯酚、 四氯乙烷、 邻甲酚、甲 酸等	废气收集并经活性炭吸附处理后排放	与环评一致	
	树脂改性实 验粉尘	粉尘	废气收集并经布袋除尘后排放	与环评一致	
	挤出、注塑 废气	非甲烷总烃	废气收集并经次氯酸钠喷淋处理后排放	与环评一致	
水污染物	生活污水及 COD、氨氮、 实验废水 SS 等		各类废水收集后由产业协同创新服务中 心配套污水处理站处理达到纳管排放要 求后纳管排放至上虞污水处理厂	与环评一致	
	危险废物	有机废液 废活性炭 沾有化学品 的包装材料 废机油	拟委托浙江新和成药业有限公司或其他 有资质单位处置	已落实	
固体废物	一般固废	造粒及注塑 边角料 收集粉尘 普通废包装 材料	委托综合利用	己落实	
	生活	垃圾	由环卫部门清运		
噪声	①选用低噪声 行特征,在生 ②加强日常的 发事故导致的	已落实			

4.2 审批部门审批决定符合性分析

根据对《绍兴市上虞区建设项目环境影响评价文件备案表》(虞环建备[2021]18号)符合性分析的落实情况检查,该项目为新建,项目审查意见三废污染防治措施落实情况详见表 4-2。

表 4-2 建设项目环境影响评价文件备案表要求落实情况汇总表

项目	环评批复要求	实际落实情况		
	租用杭州湾上虞经济技术开发区产业协同中心楼			
项目主	房,从事新材料研究,主要研究内容包括聚苯硫醚	上夕安丰西北 . 本		
要内容	树脂、PPA、树脂改性、PPS管材成型、PPS单丝挤	与备案表要求一致。		
	出拉伸、PPS流延膜挤出成型、PPS细粉气流研磨等。			
废水	收集-协同中心污水站达标纳管排放	己落实,与备案表要求一致。		
废气	收集-喷淋、活性炭吸附等处理方式-达标排放	己落实,与备案表要求一致。		
固体	规范设置暂存库,危险废物委托有资质的单位合法	口类点 上及安丰画书 办		
废物	处置。	已落实,与备案表要求一致。		

表五 验收监测质量保证及质量控制

验收监测采样方法、监测分析方法、监测质量保证和质量控制要求均按照《排污单位自行监测技术指南总则》(HJ819)执行。样品的采集、运输、保存和实验室分析及现场监测全过程质量保证工作执行《浙江省环境监测质量保证技术规定》(第二版,试行)和相应方法的有关规定。

5.1 监测分析方法

按国家污染物排放标准、环境质量标准和环境监测技术规范要求,采用列出的监测分析方法;对标准中未列出监测分析方法的污染物,优先选用国家现行标准分析方法, 其次为行业现行标准分析方法;对于国内目前尚未制定标准分析方法的污染物,可参考 使用国际(外)现行的标准分析方法,具体方法如下表 5-1。

表 5-1 监测分析方法一览表

序号	项目	检测分析方法及标准号	检出限
	颗粒物	固定污染源废气低浓度颗粒物的测定重 量法 HJ836-2017	0.6mg/m ³
	硫酸雾	固定污染源废气硫酸雾的测定离子色谱 法 HJ544-2016	0.2mg/m ³
	二氯甲烷	固定污染源废气挥发性卤代烃的测定气袋采样-气 相色谱法 HJ1006-2018	0.3mg/m^3
	甲醇	固定污染源排气中甲醇的测定气相色谱 法 HJ/T33-1999	2mg/m ³
	非甲烷总烃	固定污染源废气总烃、甲烷和非甲烷总烃的测定 气相色谱法 HJ38-2017	0.07mg/m ³
	酚类化合物	固定污染源排气中酚类化合物的测定 4-氨基安替 比林分光光度法 HJ/T32-1999	0.03mg/m ³
	氯苯类	固定污染源废气氯苯类化合物的测定气	0.03mg/m^3
	对二氯苯	相色谱法 HJ1079-2019	0.03mg/m ³
	1,1,2,2-四氯乙烷	环境空气挥发性有机物的测定吸附管采样-热脱附/气相色谱-质谱法 HJ644-2013	$0.4\mu g/m^3$
	乙腈	工作场所空气有毒物质测定第 133 部分: 乙腈、丙烯腈和甲基丙烯腈 GBZ/T 300.133-2017	0.2mg/m ³
有组织废气 监测	甲酸	环境空气颗粒物中甲酸、乙酸和乙二酸的测定离 子色谱法 HJ1271—2022	环境空气采样 量为 144m³(实 际状态),提取 液体积为 100ml,进样体 积为 200μl 时, 0.006μg/m³

	乙醇	气相色谱法《美国国家职业安全卫生研究 所工业卫生检测方法手册》第十节醇类化 合物	2mg/m ³
	排气流量	固定污染源排气中颗粒物测定与气态污染物采样方法(7排气流速、流量的测定)GB/T16157-1996及修改单S型皮托管法	-
	非甲烷总烃	环境空气总烃、甲烷和非甲烷总烃的测定直接进 样-气相色谱法 HJ604-2017	0.07mg/m ³
	总悬浮颗粒物	环境空气总悬浮颗粒物的测定重量法 HJ1263-2022	7μg/m ³
	硫酸雾	固定污染源废气硫酸雾的测定离子色谱 法 HJ544-2016	0.005mg/m ³
无组织废气 监测	氨	环境空气和废气氨的测定纳氏试剂分光光度法 HJ533-2009	吸收液 50ml 采 气 10L 时, 0.25mg/m³ 吸收液 10ml 采 气 45L 时, 0.01mg/m³
	硫化氢	亚甲基蓝分光光度法《空气和废气监测分析方法》(第四版增补版)国家环境保护 总局(2007年)5.4.10.3	0.07μg/10ml
	臭气浓度	环境空气和废气臭气的测定三点比较式 臭袋法 HJ1262-2022	-
	pH 值	水质 pH 值的测定电极法 HJ1147-2020	-
	水温	水质水温的测定温度计或颠倒温度计测 定法 GB/T13195-1991	-
	化学需氧量	水质化学需氧量的测定快速消解分光光 度法 HJ/T399-2007	3mg/L
	氨氮	水质氨氮的测定纳氏试剂分光光度法 HJ535-2009	0.025mg/L
废水监测	总磷	水质总磷的测定钼酸铵分光光度法 GB/T11893-1989	0.01mg/L
	总氮	水质总氮的测定碱性过硫酸钾消解紫外 分光光度法 HJ636-2012	0.05mg/L
	悬浮物	水质悬浮物的测定重量法 GB/T 11901-1989	/
	石油类	水质石油类和动植物油类的测定红外分 光光度法 HJ637-2018	0.06mg/L
噪声	工业企业厂界环境 噪声	工业企业厂界环境噪声排放标准 GB 12348-2008	/

5.2 监测仪器设备和人员

5.2.1 监测仪器设备

监测采样与测试分析人员均经考核合格并持证上岗,保证人员数量及专业技术背景、工作经历、监测能力与本次验收监测活动相匹配。

监测仪器经计量部门检定并在有效使用期内。本次验收监测所使用的仪器名称、型号、编号及仪器检定情况见表 5-2、表 5-3、表 5-4。

	表 5-2	现场采样检测(分析)仪	器校准/检定	情况表
类别	检测项目	仪器名称及型号	仪器编号	有效期
	7大平台 雪	自动烟尘(气)测试仪	ZCY-247	2024.11.04~2025.11.03
	硫酸雾	低浓度自动烟尘(气)仪	ZCY-543	2024.10.08~2025.10.07
	四氯乙烷	多路烟气采样器 (四路)	ZCY-517	2025.03.11~2026.03.10
	二氯甲烷	四班与伊尔大大学过程四	ZCY-555	2024.11.04~2025.11.03
	甲醇	四路恒温恒流大气采样器	ZCY-556	2024.11.04~2025.11.03
	对二氯苯		ZCY-511-06	2024.11.04~2025.11.03
	氯苯类	智能真空箱气袋采样器	ZCY-511-04	2024.11.04~2025.11.03
	酚类化合物		ZCY-511-08	2024.11.04~2025.11.03
	非甲烷总烃	采样加热枪	ZCY-648-01	2025.03.06~2026.03.05
有组织废气	臭气浓度	全自动烟气采样器(双路)	ZCY-530	2025.03.11~2026.03.10
	乙腈	四路恒温恒流大气采样器	ZCY-555	2024.11.04~2025.11.03
		多路烟气采样器(四路)	ZCY-517	2025.03.11~2026.03.10
	乙醇	四路恒温恒流大气采样器	ZCY-555	2024.11.04~2025.11.03
		多路烟气采样器(四路)	ZCY-517	2025.03.11~2026.03.10
	甲酸	四路恒温恒流大气采样器	ZCY-556	2024.11.04~2025.11.03
	颗粒物	大流量低浓度烟尘/气测试仪	ZCY-612	2024.07.31~2025.07.30
		to Al de De les Co ID TO DE	ZCY-511-06	2024.11.04~2025.11.03
		智能真空箱气袋采样器	ZCY-602	2025.03.11~2026.03.10
	非甲烷总烃	采样加热枪	ZCY-648-01	2025.03.06~2026.03.05
		木件加7台	ZCY-648-05	2025.03.06~2026.03.05
			ZCY-549	2024.11.04~2025.11.03
	总悬浮颗粒物		ZCY-606	2024.06.18~2025.06.17
			ZCY-550	2024.11.04~2025.11.03
		恒温恒流大气/颗粒物采样器	ZCY-607	2024.06.18~2025.06.17
	甲醇	采样器	ZCY-551	2024.11.04~2025.11.03
	1. 11.		ZCY-608	2024.06.18~2025.06.17
			ZCY-552	2024.11.04~2025.11.03
	非甲烷总烃		ZCY-609	2024.06.18~2025.06.17
无组织废气	11-17 州心区		ZCY-511-10	2024.11.04~2025.11.03

智能真空箱气袋采样器

恶臭采样桶

空盒气压表

轻便三杯风向风速表

硫酸雾

臭气浓度

氨

硫化氢

ZCY-511-13 2024.11.04~2025.11.03

2024.11.04~2025.11.03

2025.03.11~2026.03.10

2024.06.27~2025.06.26

2024.10.24~2025.10.23

2024.08.05~2025.08.04

ZCY-511-15

ZCY-600

ZCY-604-02

ZCY-547

ZCY-103

	废水	рН	便携式水质检测仪	ZCY-568	2024.11.04~2025.11.04	
	噪声		多功能声级计 ZCY-53		2024.06.24~2025.06.23	
			声校准器	ZCY-187-01	2025.03.20~2026.03.19	

表 5-3 实验室主要检测分析设备校准/检定情况表

	及 3-3							
类别	检测项目	仪器名称及型号	仪器编号	有效期				
	颗粒物	电子天平	ZCY-336	2024.12.23~2025.12.22				
	酚类化合物	752N 紫外可见分光光度计	ZCY-360	2025.03.11~2026.03.10				
	甲醇							
	非甲烷总烃	气相色谱仪 GC-1100	ZCY-132	2025.03.11~2027.03.10				
有组织废	二氯甲烷	GC7820A	ZCY-227	2025.03.11~2027.03.10				
气	1,1,2,2-四氯 乙烷	GC-MS	ZCY-228	2024.06.18~2026.06.17				
	乙腈							
	乙醇	与担告等价以 A - :1	ZCY-514	2025 02 11 2027 02 10				
	氯苯类	气相色谱仪 Agilent7820A		2025.03.11~2027.03.10				
	对二氯苯							
	硫酸雾	883 离子色谱仪	ZCY-196	2025.03.11~2027.03.10				
	总悬浮颗粒 物	电子天平	ZCY-336	2024.12.23~2025.12.22				
无组织废 气	氨	722S 可见分光光度计	ZCY-138	2025.03.11~2026.03.10				
•	硫酸雾	883 离子色谱仪	ZCY-196	2025.03.11~2027.03.10				
	硫化氢	752N 紫外可见分光光度计	ZCY-360	2025.03.11~2026.03.10				
	氨氮	722S 可见分光光度计	ZCY-138	2025.03.11~2026.03.10				
	石油类	JLBG-121U 红外分光测油仪	ZCY-369	2024.06.18~2025.06.17				
废水	悬浮物	ATY224R 电子天平	ZCY-632	2024.11.27~2025.11.26				
汉小	心付彻	电热鼓风干燥箱 HP-GF136	ZCY-639	2025.03.11~2026.03.10				
	总磷	TU-1810PC 紫外可见分光光度计	ZCY-315	2025.03.06~2026.03.05				
	总氮	752N 紫外可见分光光度计	ZCY-360	2025.03.11~2026.03.10				

	1. 光電信息	TU-1810PC 紫外可见分光光度计	ZCY-315	2025.03.06~2026.03.05
	化学需氧量	智能消解仪	ZCY-544	2024.06.18~2025.06.17

表 5-4 pH 计校准表

仪器名称	仪器型号	仪器编号	単位	校准 日期	标准缓冲液 理论值	仪器显示	示值误差	允许误 差	是否合 格
/= 10: _N 1.				2025	4.00	3.99	0.01	≤0.05	合格
便携式水 质检测仪	86031	031 ZCY-568	0.01pH	2025. 4.15	6.86	6.85	0.01	≤0.05	合格
风型的区					9.18	9.17	0.01	≤0.05	合格
/= 1A: _				2025	4.00	3.98	0.02	≤0.05	合格
便携式水 质检测仪	86031 2	86031 ZCY-568 0	0.01pH	2025. 4.16	6.86	6.85	0.01	≤0.05	合格
风型的区					9.18	9.17	0.01	≤0.05	合格

5.2.1 人员资质

样人员和实验分析人员均为绍兴市中测检测技术股份有限公司的持证在岗工作人员;人员持证情况见表 5-5。

表 5-5 人员持证情况统计表

1										
姓名	上岗编号	上岗证有效日期	人员							
钱任淘 2	202304565	2023.4 至 2029.4	绍兴市中测检测技术股份有限公司采样人员							
朱锦辉 2	202402584	2024.2 至 2030.2	绍兴市中测检测技术股份有限公司采样人员							
潘炯杰 2	202403588	2024.3 至 2030.3	绍兴市中测检测技术股份有限公司采样人员							
杨凯沂 2	202304564	2023.4 至 2029.4	绍兴市中测检测技术股份有限公司采样人员							
潘良明 2	201709529	2022.6 至 2028.6	绍兴市中测检测技术股份有限公司采样人员							
王江辉 2	202312576	2023.12 至 2029.12	绍兴市中测检测技术股份有限公司采样人员							
张益伟 2	202309574	2023.9 至 2029.9	绍兴市中测检测技术股份有限公司采样人员							
梁钗军 2	202409600	2024.9 至 2030.9	绍兴市中测检测技术股份有限公司采样人员							
潘露露 2	201903639	2022.6 至 2028.6	绍兴市中测检测技术股份有限公司实验室检测人员							
曹磊磊 2	202205663	2022.5 至 2028.5	绍兴市中测检测技术股份有限公司实验室检测人员							
王育玲 2	201808638	2022.6 至 2028.6	绍兴市中测检测技术股份有限公司实验室检测人员							
王祎锋 2	202203662	2022.3 至 2028.3	绍兴市中测检测技术股份有限公司实验室检测人员							
赵梁 2	202103656	2021.3 至 2027.3	绍兴市中测检测技术股份有限公司实验室检测人员							
丁洁雅 2	202108659	2021.8 至 2027.8	绍兴市中测检测技术股份有限公司实验室检测人员							
赵可渔 2	202006653	2020.6 至 2026.6	绍兴市中测检测技术股份有限公司实验室检测人员							
周恬逸 2	202504692	2025.4 至 2031.4	绍兴市中测检测技术股份有限公司实验室检测人员							
裘浩文 2	202412679	2024.12 至 2030.12	绍兴市中测检测技术股份有限公司实验室检测人员							
谢裕莲 2	202502688	2025.2 至 2031.2	绍兴市中测检测技术股份有限公司实验室检测人员							
朱宋怡 2	202411678	2024.11 至 2030.11	绍兴市中测检测技术股份有限公司实验室检测人员							
姚新栋 2	202503691	2025.3 至 2031.3	绍兴市中测检测技术股份有限公司实验室检测人员							
王芸 2	202410677	2024.10 至 2030.10	绍兴市中测检测技术股份有限公司实验室检测人员							
陈竹英 2	202005305	2020.5 至 2026.5	绍兴市中测检测技术股份有限公司实验室检测人员							

潘俊	202202661	2022.2 至 2028.2	绍兴市中测检测技术股份有限公司实验室检测人员
蒋金莲	202009655	2020.9 至 2026.9	绍兴市中测检测技术股份有限公司实验室检测人员
张鑫军	201708629	2022.6 至 2028.6	绍兴市中测检测技术股份有限公司实验室检测人员
陈卓君	202110660	2021.10 至 2027.10	绍兴市中测检测技术股份有限公司实验室检测人员
董芹	202105658	2021.5 至 2027.5	绍兴市中测检测技术股份有限公司实验室检测人员
计立杰	202501680	2025.1 至 2031.1	绍兴市中测检测技术股份有限公司实验室检测人员
梁晓	201312303	2022.6 至 2028.6	绍兴市中测检测技术股份有限公司实验室检测人员
梁玮炜	201403304	2022.6 至 2028.6	绍兴市中测检测技术股份有限公司实验室检测人员
刘珂钰	202209716	2022.9 至 2028.9	绍兴市中测检测技术股份有限公司实验室检测人员
杨丽花	202408827	2024.8 至 2030.8	绍兴市中测检测技术股份有限公司实验室检测人员
郑叶凯	201401202	2022.6 至 2028.6	绍兴市中测检测技术股份有限公司实验室检测人员
梁江锋	201903706	2022.6 至 2028.6	绍兴市中测检测技术股份有限公司实验室检测人员
朱喆	202008208	2020.8 至 2026.8	绍兴市中测检测技术股份有限公司实验室检测人员
李旭红	202405213	2024.5 至 2030.5	绍兴市中测检测技术股份有限公司实验室检测人员
吕钰	202209717	2022.9 至 2028.9	绍兴市中测检测技术股份有限公司实验室检测人员
徐泽帅	202405718	2024.5 至 2030.5	绍兴市中测检测技术股份有限公司实验室检测人员
俞建平	202407307	2024.7 至 2030.7	绍兴市中测检测技术股份有限公司实验室检测人员
虞婷婷	202110712	2021.10 至 2027.10	绍兴市中测检测技术股份有限公司实验室检测人员
张晓霞	202408717	2024.8 至 2030.8	绍兴市中测检测技术股份有限公司报告编制人员
吕巧红	202209716	2022.9 至 2028.9	绍兴市中测检测技术股份有限公司报告编制人员
俞源栋	201209201	2022.6 至 2028.6	绍兴市中测检测技术股份有限公司报告审核人员
杨加赢	201906542	2022.6 至 2028.6	绍兴市中测检测技术股份有限公司授权签字人
			·

5.3 样品有效性分析

5.3.1 废水

具体的废水样品收集方式、样品的保存要求及流转时间见表 5-6。

表 5-6 容器、保存技术、样品体积以及保存时间的要求 (废水)

监测项目	容器材质	保存条件	样品最 小重量	样本最大保 留时间	采样时间	检测时间	时效 评价
11	pH P 现场测定		200 1	样品充满容器立即密封,2h	2025.4.15 (9:56-16:12)	2025.4.15 (9:58-16:15)	
pН	Ρ	奶奶	200ml	^{- の密} 到, 2n - 内完 - 成测定	2025.4.16 (8:45-14:50)	2025.4.16 (8:48-14:53)	符合
化学需氧			500ml	2d	2025.4.15 (9:56-16:12)	2025.4.16	
量	100ml, G	1123O4, p11 <u>\(\) 2</u>	300IIII	Zu	2025.4.16 (8:45-14:50)	2025.4.17	符合
 		加硫酸使水样酸 化至 pH<2,2~	500ml	7d	2025.4.15 (9:56-16:12)	2025.4.17	- 符合
氨氮	G, F	化至 pH<2, 2~ 5℃下可保存	300mi	/u	2025.4.16 (8:45-14:50)	2025.4.18	11) 🖽
 悬浮物	G, P	4℃以下冷藏保 存	500~100 0m	7d	2025.4.15 (9:56-16:12)	2025.4.17	符合
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	UIII		2025.4.16	2025.4.18	

					(8:45-14:50)		
)/ T)k	P/G	24h 内尽快分析 /24h 内不能分			2025.4.15 (9:56-16:12)	2025.4.16 (8:53)	hele A
总磷		析,可冷冻保存,	500ml	30d	2025.4.16	2025.4.17 (8:56)	符合
		30d			(8:45-14:50) 2025.4.15		
总氮	P/G	P/G 浓硫酸调节 pH 至 1~2,常 温下可保存;	500ml	7d	(9:56-16:12)	2025.4.16	符合
心炎					2025.4.16 (8:45-14:50)	2025.4.17	
石油类	曲类	加入盐酸酸化至 pH≤2,0~4℃以	500ml	3d	2025.4.15 (9:56-16:12)	2025.4.17	符合
74個大		下冷藏保存	2001111	- Ju	2025.4.16 (8:45-14:50)	2020.11.17	ן מון

5.3.2 废气

具体的废气及环境空气样品收集方式、样品的保存要求及流转时间见表见表 5-7。

表 5-7 容器、保存技术、样品体积以及保存时间的要求 (废气)

	次 5-/ 谷命、	水什以小	、作品や次り	从水行	女にロでに	水 (及 ()	
监测项目	容器材质	保存条件	样品最小重量	样本最 大保留 时间	采样时间	检测时间	时效 评价
非甲烷总 烃	无组织: 气袋; 环 境空气: 气 袋	气袋保存 的样品	一小时内等时间间隔采集 3~4 个样	仅测甲	2025.4.15 2025.4.16 2025.6.4 2025.6.5	2025.6.5 2025.6.6	符合
总悬浮颗 粒物	滤膜	在不高于 采样 的 度 条件 下保存	一小时内等时间间隔采集 3~4 个样	30d		2025.4.16 (11:49) - 2025.4.17 (16:58) 2025.4.17 (11:46) - 2025.4.18 (17:10)	符合
颗粒物	等速跟踪采样,样 品采集时应 保证每个样品的增 重不小于 1mg 或采样体积不 小于 1m3		一小时内等时间间隔采集 3~4 个样	30d	2025.4.15	2025.4.16 (10:53) -2025.4.17 2025.4.19 (10:41) -2025.4.20	符合
臭气浓度	1.5L/3L/10L 真空 瓶; 5L、10L、 30L 气袋	避光保存	一小时内等时间间隔采集 3~4 个样	24h	2025.6.4	2025.4.16 (9:02) - 2025.4.16 (15:38) 2025.4.16 (18:20) - 2025.4.17 (14:09) 2025.6.4 (19:18) - 2025.6.4 (20:00) 2025.6.5 (18:30) - 2025.6.5 (19:15)	符合
硫酸雾	有组织:烟尘采样方式,采样管出口串联2支50ml吸收液大型冲击瓶;无组织:滤膜	密封 保存,24h 内完成 试样制备, 制备好 的试样于 0~4℃	有组织:等速 果样, 1h 或 1h 内间 采 3~4 无 织: 100L/min, 连 4 1h 或: 100L/min, 连 4 1h 或	30d	2025.4.15 2025.4.16 2025.4.15 2025.4.16 2025.6.4 2025.6.5	2025.4.17	符合

			1h 内 等时间间隔采 3~4 个样					
					2025.4.15	2025.4.15 (18:10-20:02)		
二氯甲烷	有组织:聚氟乙烯	避光保存,	充满气袋	24h	2025.4.16	2025.4.17 (9:19-10:21)		
→*(` `\\\r	气袋	24h 内分析	JUIM (AC	2711	2025.6.4	2025.6.4 (19:11-20:34)	符合	
					2025.6.5	2025.6.5 (18:26-20:00)		
		3~5℃下冷 藏保	一小时内等时		2025.4.15 2025.4.16	2025.4.19 2025.4.21	-	
甲醇	有组织:气袋;无 组织:气袋	存,7d 内分 析完 毕		7d	2025.6.4 2025.6.5	2025.6.9	符合	
	左 姆 四 四块流		有组织:		2025.4.15	2025.4.15 (20:44-20:47)		
酚类化合 2.	14 组织: 吸収液 25 0ml 虫	室温不超 过 25℃,干	1.0L/min 采 10~30min;	24h	2025.4.16	2025.4.16 (21:00-21:05)	- - - 符合 -	
物	收液 10.0ml 串 10.0ml	扰物质影 响不大时,	无组 织: 1.0L/min		2025.6.4	2025.6.4 (20:59-21:10)		
		碱性样品 可存放 3d	采 60min		2025.6.5	2025.6.5 (21:07-21:17)		
氯苯类			有组织: 0.5L/min	7d	2025.4.15	2025.4.18-19		
水 本大		避光保存,	流量采 10min; 无组		2025.4.16	2023.4.10-19		
对二氯苯	活性炭管	4℃下冷藏 可保存 7d	织: 0.5L/min~ 1.0L/min 流量		2025.6.4	2025.6.5-6	符合	
			采集 空气样品		2025.6.5	2025.6.8		
		1. → 1.11 km	10~200mL/mi n 流		2025.4.15	2025 4 10		
1,1,2,2-四		包裹铝箔 纸,置于 干燥器内,	量采气 2L;相 对湿		2025.4.16	2025.4.18		
氯乙烷	极阳语	4°C下 冷藏保存,	度大于 90%,	7d	2025.6.4		符合	
		7d	采样体积,最 少不 小于 300ml		2025.6.5	2025.6.6		
7 n±	<i>F</i> → <i>L</i> D-	カラン・カー	一小时内等时		2025.4.15 2025.4.16	2025.4.18		
乙腈	气袋	避光保存	间间隔采集 3~4 个样	7d	2025.6.4	2025.6.5	符合	
					2025.6.5	2025.6.6-7 2025.4.17		
		Sustanti desirenti	一小时内等时		2025.4.15	2025.4.17		
甲酸	气袋	避光保存	间间隔采集 3~4 个样	7d	2025.6.4 2025.6.5	2025.6.6	符合	
	- A.) 112 / 11 / 11 - 1-	一小时内等时		2025.4.15 2025.4.16	2025.4.19		
乙醇	气袋	避光保存	间间隔采集 3~4 个样	7d	2025.6.4	2025.6.6	符合	
	工业废气: 50ml 吸		工业废气:		2025.6.5	2025.6.7 2025.4.16	+	
	L业废气: 50ml 吸 收液;环境空气: 10ml 吸收液		工业废气: 0.5~1.0L/min, 时间	7d	2025.4.15	2025.4.16	符合	

			由现场定;环境空 气: 0.5~1.0L/min, 采集 45min 以 上					
硫化氢	环境空气: 吸收液	² 险 业 但 方	1.0L/min, 避光	01.	2025.4.15	2025.4.15 (20:38-20:44)	符合	
师化刭	10.0ml	姓兀 徐仔	1.0L/min, 避光 采样 30~60min	8h	2025.4.16	2025.4.16 (20:45-20:58)	付合	

5.4 废水监测分析过程中的质量保证和质量控制

废水的采集、运输、保存、实验室分析和数据计算的全过程质控手段均按 HJ/T92、HJ/T91 和《浙江省环境质量技术保证规定第三版(试行)》等的要求进行。

废水采集前确定采样负责人,制定采样计划,并组织实施。每批水样根据《浙江省 环境质量技术保证规定第三版(试行)》的要求选择部分项目加采现场空白样,与样品 一起送实验室分析。采样时填写"水质采样记录表",现场记录,及时核对采样计划、记 录与水样,确保无错误或遗漏。

废水采集完成后立即转入保温箱,内置冰袋,确保 4℃避光冷藏,当天运输至实验室及时分析。水样交实验室时接收者与送样者双方在送样单上签名。每次分析结束后,除必要保存外,样品瓶及时清洗。

按照《环境监测分析方法标准制修订技术导则》(HJ168)计算并确定方法检出限,并满足方法要求。每批样品采集不少于 10%的平行样,每批样品至少做一份样品的平行双样;对可以得到标准/质控样品的监测因子,每批样品或每 20 个样品测定一次,测定结果的准确度合格率必须达到 100%;对无标准/质控样品的监测因子,且可进行加标回收测试的,每批样品随机抽取一定比例的样品做加标回收,或采取其他质控措施,实验室分析过程相关情况见下表。

	衣 3-8 水件稍密性控制情况统计衣										
内容	样品个数(个)	密码平行数	实验室平行数	合格数(个)	合格率(%)						
项目		(个)	(个)	日俗奴(1)	口俗华(%)						
pH 值	8	2	/	2	100						
化学需氧量	8	2	2	4	100						
氨氮	8	2	2	4	100						
总磷	8	2	2	4	100						
总氮	8	2	2	4	100						
悬浮物	8	/	/	/	/						
石油类	8	/	/	/	/						

表 5-8 水样精密性控制情况统计表

表 5-9 水样准确度控制情况统计表

内容项目	实验室加标数 (个)	 质控样数(个)	合格数(个)	合格率(%)
pH 值	/	2	2	100
化学需氧量	2	/	2	100
氨氮	2	/	2	100
总磷	2	/	2	100
总氮	2	/	2	100
石油类	/	1	1	100

表 5-10 废水全程序空白样品检测结果汇总

项目	项目 样品编号				
化学需氧量	废水 20250415XHCQKB01	<3mg/L			
化子而利里	废水 20250416XHCQKB01	\Stilg/L			
氨氮	废水 20250415XHCQKB01	<0.025 /I			
安 (炎(废水 20250416XHCQKB01	<0.025mg/L			
石油类	废水 20250415XHCQKB02	<0.24mg/L			
11個天	废水 20250416XHCQKB02	√0.24 IIIg/L			
总磷	废水 20250415XHCQKB01	<0.01mg/L			
心 19年	废水 20250416XHCQKB01	<0.01mg/L			
总氮	废水 20250415XHCQKB01	<0.05mg/L			
心炎(废水 20250416XHCQKB01				

表 5-11 废水水质监测质控结果统计表

	现场平行样结果评价										
样品编号	分析指标	单位	样品结果	平行样 (-P)	相对偏	控制范围%	评价				
作印编 夕		平世	1十四:47本	结果	差%	1空前70	וע־זעו				
废水 20250415XHC0104	"II	/	7.6	7.6	0	±0.1个pH 值	合格				
废水 20250416XHC0104	рН	/	7.5	7.5	0	±0.1个pH 值	合格				
废水 20250415XHC0101	氨氮	mg/L	0.189	0.198	2.3	≤5	合格				
废水 20250416XHC0101	安(炎)	mg/L	0.582	0.570	1.0	≤5	合格				
废水 20250415XHC0101	总磷	mg/L	0.04	0.04	0	≤5	合格				
废水 20250416XHC0101	心物	mg/L	0.02	0.02	0	≤5	合格				
废水 20250415XHC0101	总氮	mg/L	5.48	5.54	0.544	≤5	合格				
废水 20250416XHC0101	心炎	mg/L	14.4	14.2	0.699	≤5	合格				
废水 20250415XHC0101	化学需氧	mg/L	61.4	64.6	2.54	≤5	合格				
废水 20250416XHC0101	量	mg/L	49.4	48.0	1.44	≤5	合格				
	实验室平行样结果评价										
样品编号 分析指标 单位 样品结果 平行样 相对偏 控制范围%							评价				

						24		Т	
				(-PX)结果	差%			
复氮	mg/L	. 0).294	0.3	304	1.5		≤5	合格
女(灰)	mg/L	, C	0.355	0.364		1.3		≤5	合格
台磁	mg/L	, (0.02	0.	02	2.22		≤5	合格
10. 194 1	mg/L	, (0.13	0.	13	2.70		≤5	合格
当 / / / / / / / / / / / / / / / / / / /	mg/L	. :	5.78	5.	54	2.07		≤5	合格
心炎	mg/L	,	13.3	13	3.6	1.00		≤5	合格
化学需氧	mg/L	,	64.0	61	1.7	1.80		≤5	合格
量	mg/L	. !	98.7	37	7.6	1.46		≤5	合格
		质控	样结果	平价					
						质控	样标		
批号	批号		质控样测定值(mg/L)			淮	值	评判	J
						(m	g/L)		
2025A4	194		7.03			7.05	±0.05	合格	-
2025A4	194		7.03			7.05	7.05±0.05		
2024B5	82		25.2			25.7	7±2.0	合格	
	实验	室加	标质控	结果评	价				
分析指	≦标 □	单位	加标	量	测得值	回收	率%	控制范围%	评价
复点	₹	μg	20.	0	20.030) 10	00	95-105	合格
安炎	ξί,	μg	20.	0	20.333	3 10)2	95-105	合格
)4 <i>1</i> 3	K -	μg	10.	0	9.828	98	3.3	90-110	合格
	*	μg	10.	0	9.762	97	'.6	90-110	合格
E水 20250415XHC0109 加标		μg	26.	0	52.93	95	5.0	90-110	合格
		μg	24.	0	50.80	95	5.3	90-110	合格
化学制	壽氧	μg	37:	5	357	95	5.2	90-110	合格
量		μg	37	5	364	97	'.1	90-110	合格
	(契) (基) (基) (基) (基) (基) (基) (基) (基) (基) (基	Samg/L mg/L mg/	大田 10 mg/L 10 mg/L	大田	一切	一切	一切	類別	類別

5.5 气体监测分析过程中的质量保证和质量控制

现场监测期间,采样负责人对被测污染源工况进行核查并记录,确保生产设备和治理设施正常运行,工况条件符合监测要求。样品在采集完成后立即转入保温箱,避光保存,保证样品在保存、运输和制备过程中性状问题,当天运输至实验室及时分析。

气体监测分析过程中尽量避免被测排放物中共存污染物对分析的交叉干扰。确保被测排放物的浓度在仪器量程的有效范围(即 30%-70%)。烟气采样器在进入现场前对采样器流量计、流速计等进行校核。烟气监测系统(分析)仪器在测试前按监测因子分别用标准气体和流量计对其进行校核(标定),在测试时保证采用流量的准确。本次验收监测的质量控制情况详见下表。

表 5-12 废气精密度控制情况统计表

内容	样品个数	全程序空白	现场平行数	实验室平行数	△ 枚粉 (♠)	合格率(%)
项目	(个)	(个)	(个)	(个)	口俗奴 (/	
颗粒物	6	2	/	/	2	100
硫酸雾	36	18	/	/	18	100
二氯甲烷	12	4	/	/	4	100
甲醇	36	6	/	36	42	100
非甲烷总烃	48	4	/	4	8	100
酚类化合物	12	4	/	/	4	100
氯苯类	12	4	/	/	4	100
对二氯苯	12	4	/	/	4	100
总悬浮颗粒物	24	2	/	/	2	100
氨	32	2	/	/	2	100
硫化氢	32	2	/	/	2	100
臭气浓度	44	/	/	/	/	/
1, 1,2,2-四氯乙烷	12	6	/	/	6	100
乙腈	12	8	/	/	8	100
甲酸	12	8	/	/	8	100
乙醇	12	8	/	/	8	100

表 5-13 废气准确度控制情况统计表

内容	实验室加标数	质控样数(个)	合格数(个)	合格率(%)
项目	(个)	网络特数(年)	百俗奴(1)	
硫酸雾	6	/	6	100
二氯甲烷	4	/	4	100
甲醇	3	/	3	100
非甲烷总烃	4	/	4	100
酚类化合物	2	/	2	100
氯苯类	3	/	3	100
对二氯苯	3	/	3	100
氨	2	/	2	100
硫化氢	2	/	2	100
1, 1,2,2-四氯乙烷	2	/	2	100
乙腈	3	/	3	100
甲酸	4	/	4	100
乙醇	3	/	3	100

	表 5-14 废气全程序空白样品检测结果	昊 汇总	
项目	样品编号	测定结果	
万里泛照验 柳	废气 20250415XHCQKB20	称量前后数据差<0.1mg,合格	
总悬浮颗粒物	废气 20250416XHCQKB20		
氨	废气 20250415XHCQKB26	<0.45μg/m ³	
安\	废气 20250416XHCQKB26	- <0.43μg/m ³	
	废气 20250415XHCYKB01	<0.07mg/m ³	
北田岭光枫	废气 20250416XHCYKB01		
非甲烷总烃	废气 20250604TCYKB01		
	废气 20250605TCYKB01		
颗粒物	废气 20250415XHCQKB14	,	
大贝木 <u>工</u>	废气 20250416XHCQKB14	- /	
硫化氢	废气 20250415XHCQKB25	1	
911.7亿全(废气 20250416XHCQKB25	/	
	废气 20250415XHCQKB06	<0.03mg/m ³	
 	废气 20250416XHCQKB06	V.03mg/m	
即天化百初	废气 20250604TCYKB08	1	
	废气 20250605TCYKB08	/	
	废气 20250415XHCQKB01		
	废气 20250415XHCQKB02		
	废气 20250415XHCQKB03		
	废气 20250416XHCQKB01		
	废气 20250416XHCQKB02		
	废气 20250416XHCQKB03		
硫酸雾	废气 20250604TCYKB01	<3.2mg/L	
则政务	废气 20250604TCYKB01-1	\\ \3.2\text{Ilig/L}	
	废气 20250604TCYKB03		
	废气 20250604TCYKB04		
	废气 20250605TCYKB01		
	废气 20250605TCYKB02		
	废气 20250605TCYKB03		
	废气 20250605TCYKB04		
	废气 20250415XHCQKB23		
硫酸雾	废气 20250415XHCQKB24	< 1.2mg/L	
	废气 20250416XHCQKB23	\ 1.2mg/L	
	废气 20250416XHCQKB24		
甲醇	废气 20250415XHCQKB05	<2mg/m ³	

	废气 20250415XHCQKB21		
	废气 20250416XHCQKB05	_	
	废气 20250416XHCQKB22		
	废气 20250604TCQKB07		
	废气 20250605TCQKB07		
	废气 20250415XHCQKB07	$< 0.24 \mu g/m^3$	
氯苯类、对二氯苯 -	废气 20250416XHCQKB07	<0.24μg/m² <0.3μg/m³	
	废气 20250604TCQKB05		
	废气 20250605TCQKB05		
	废气 20250415XHCQKB05		
二氯甲烷	废气 20250416XHCQKB05	<0.2 m \(\sigma \) /m 3	
— 录 甲 沉	废气 20250604TCQKB06	<0.3mg/m ³	
	废气 20250605TCQKB06		
	废气 20250415XHCQKB081	<0.002 / 3	
	废气 20250416XHCQKB081	$< 0.003 \mathrm{mg/m^3}$	
1.100四层又岭	废气 20250604TCQKB13		
1, 1,2,2-四氯乙烷	废气 20250604TCQKB14	20.0004	
	废气 20250605TCQKB13	$< 0.0004 \text{mg/m}^3$	
	废气 20250605TCQKB14		
	废气 20250415XHCQKB12		
	废气 20250415XHCQKB13		
	废气 20250416XHCQKB12		
	废气 20250416XHCQKB13		
乙腈	废气 20250604TCQKB11	$<3\mu g/m^3$	
	废气 20250604TCQKB12	1	
	废气 20250605TCQKB11	-	
	废气 20250605TCQKB12	1	
	废气 20250415XHCQKB10		
-	废气 20250415XHCQKB11	-	
	废气 20250416XHCQKB10	1	
	废气 20250416XHCQKB11		
乙醇	废气 20250604TCQKB09	$<30\mu g/m^3$	
_	废气 20250604TCQKB10	1	
	废气 20250605TCQKB09		
	废气 20250605TCQKB10		
	废气 20250415XHCQKB08		
甲酸	废气 20250415XHCQKB09	<0.048mg/L	
I FIX	废气 20250416XHCQKB08		

废气 20250416XHCQKB09	
废气 20250604TCQKB15	
废气 20250604TCQKB16	<0.022/I
废气 20250605TCQKB15	<0.032mg/L
废气 20250605TCQKB16	

表 5-15 废气中实验室平行样数据汇总

项目编号	项目	检测结果	相对偏差	允许相对偏差	结果评价
	坝日	(mg/m^3)	(%)	(%)	均木订 川
废气 20250415XHC0403		0.626	5.0	~15	符合
废气 20250415XHC0403PX		0.704	5.9	≤15	1万亩
废气 20250416XHC0403		0.682	0.0		符合
废气 20250416XHC0403PX	非甲烷总烃	0.670	0.9	≤15	1万亩
废气 20250604TC0127	非中风芯灯	2.191	0.6	~1 <i>5</i>	符合
废气 20250604TC0127PX		1.845	8.6	≤15	1万亩
废气 20250605TC0127		1.366			符合
废气 20250605TC0127PX		1.238	4.9	≤15	17 音

表 5-16 有组织废气监测质控结果统计表

质控样结果评价								
质控样编号	分析项目	单位	加标量	测得值	回收率%	控制范围%	结果评价	
空白加标	酚类化合物	μg	4.00	3.890	97.2	88.5-118	合格	
空白加标	即矢化百初	μg	4.00	3.821	95.5	88.5-118	合格	
空白加标		μg	300	300.70	100	90-110	合格	
空白加标	硫酸雾	μg	300	309.00	103	90-110	合格	
空白加标	別的分	μg	300	394.00	109	90-110	合格	
空白加标		μg	300	301.90	98.9	90-110	合格	
空白加标		μg	2.00	1.907	95.4	70-120	合格	
空白加标	氯苯类	μg	2.00	1.844	92.2	70-120	合格	
空白加标		μg	2.00	1.749	87.4	70-120	合格	
空白加标		μg	2.00	1.947	97.4	70-120	合格	
空白加标	对二氯苯	μg	2.00	1.764	88.2	70-120	合格	
空白加标		μg	2.00	1.702	85. 1	70-120	合格	
空白加标		mg/m ³	5	4.35023	88	71.9-103. 1	合格	
空白加标		mg/m ³	5	4.59075	92	71.9-103. 1	合格	
空白加标] 一就甲灰	mg/m ³	5	5.02813	100.6	71.9-103. 1	合格	
空白加标		mg/m ³	5	4.92728	98.6	71.9-103. 1	合格	
空白加标	1, 1,2,2-四	ng	25.00	23.86	95.4	70-130	合格	
空白加标	氯乙烷	ng	200	194.81	97.4	70-130	合格	

空白加标		μg	10	9.331	97.4	1	90-110	合格	
空白加标	乙腈	μg	10	9.260	96.7	7	90-110	合格	
空白加标		μд	10	9.397	98.	1	90-110	合格	
空白加标		μg	51.0962	53.886	108		90-110	合格	
空白加标	乙醇	μg	50.473	50.246	102	,	90-110	合格	
空白加标		μg	50.7224	49.632	101		90-110	合格	
空白加标		μg	50.0	50.7	101		70-130	合格	
空白加标	田≕会	μg	50.0	53.7	107	,	70-130	合格	
空白加标	甲酸	μд	20.0	20.4	99.8	3	70-130	合格	
空白加标		μд	50.0	62.6	125		70-130	合格	
			质控	样结果评	价	'			
分析项目质控	八七宿口	测产体	++ -	沙庄	光		/ - 	日)立 / 人	
样编号	分析项目	测定值	1年前	浓度	单位		细力	具评价	
空白加标		17.8	17	7.9	mg/m ³	回收率	区 101%在	100±10%内,台	
空白加标	甲醇	18. 1	18	3.0	mg/m ³	回收率	区 101%在	100±10%内,台	
空白加标		17.8	17	7.5	mg/m ³	回收率	98.3%在	100±10%内,台	合格
空白加标		18. 1	18	3.2	mg/m ³	回收率	区 101%在	100±10%内,台	
空白加标	非甲烷总	18. 1	18	3.6	mg/m ³	回收率	区 103%在	100±10%内,台	
空白加标	烃	18. 1	18	3.5	mg/m ³	回收率	区 102%在	100±10%内,台	
空白加标		18. 1	18	3.5	mg/m ³	回收率	区 102%在	100±10%内,台	合格

表 5-17 无组织废气监测质控结果统计表

	质控样结果评价									
质控样编号	分析项目	单位	加标量	测得值	回收率%	控制范围%	结果评价			
空白加标		μg	10.00	9.85	98.5	97-103	合格			
空白加标	氨	μg	10.00	9.79	97.9	97-103	合格			
空白加标	水儿层	μg	1.00	0.996	99.6	97.7-100.3	合格			
空白加标	硫化氢	μg	1.00	0.980	98.0	97-103	合格			
空白加标	7大平台 雪	μg	200	257.60	107	90-110	合格			
空白加标	硫酸雾	μg	200	259.00	107	90-110	合格			

5.6 噪声监测分析过程中的质量保证和质量控制

噪声检测根据方案点位及《工业企业厂界噪声排放标准》(GB12348-3008)中的方法进行。声级计在测试前后用标准发生器进行校准,测量前后仪器的灵敏度相差不大于0.5dB,若大于0.5dB测试数据无效。噪声仪器校验表见下表。

表 5-4 声级校准器校准

现场测量仪器校准结果表									
		15 VA 明 刊 日	昼	间	夜	间			
仪器型号及编 仪器型号及编		校准器型号	校准值 dB(A)		校准值 dB(A)		结果评		
	号	及标准值	测量前	测量后	测量前	测量后	价		
	AWA6293	AWA6221A	02.0	02.0	02.0	02.0	合格		
噪声统计	ZCY-537	94.0	93.8	93.8	93.8	93.8	合恰		
分析仪	AWA6293	AWA6221A	02.0	02.0	02.0	02.0	人扮		
	ZCY-537	94.0	93.8	93.8	93.8	93.8	合格		

表六 验收监测内容

6.1 环境保护设施调试效果

通过对各类污染物达标排放监测,来说明环境保护设施调试效果,本次验收委托绍 兴市中测检测技术股份有限公司于 2025 年 4 月 15 日-16 日、6 月 4 日-5 日对项目相关 污染物进行监测,具体监测内容如下:

6.1.1 废水

本项目废水主要有树脂聚合实验和分析检验废水,挤出过程中产生的循环冷却废水,废气处理废水、设备及地面清洗废水以及生活污水等。本项目外排综合废水委托杭州湾产业协同创新中心污水处理站处理,环评批复文件中未对废水处理设备有处理效率要求,因此未对污水进口进行采样监测。

本项目具体监测内容见表 6-1。

 序号
 监测点位
 点位编号
 监测项目
 监测频次
 备注

 1
 污水排放口
 1#
 pH、COD_{Cr}、氨氮、总氮、 总磷、SS、石油类
 4次/天, 连续2天

表 6-1 废水监测内容及频次

6.1.2 废气

本项目运营过程中产生的废气主要为树脂聚合实验废气、分析检验废气,树脂改性实验粉尘,挤出、注塑废气等。由于 DA001、DA002 排气筒前的废气防治措施进气口不具备采样条件,未对进气口进行采样监测。

废气监测点位布置及废气监测内容见表 6-2。

污染源	监测点位	点位编号	监测项目	监测频次
有组织排放			硫酸雾、甲醇、苯酚、 二氯甲烷、非甲烷总烃、 氯苯类、对二氯苯、四 氯乙烷、乙腈、甲酸、 乙醇、臭气浓度	监测2天,每天3次。同步 记录废气量、温度等参数
	DA002 出口	2#	颗粒物	
	DA003 进出口	3#	非甲烷总烃	
无组织 排放	厂界四周	上风向一个点; 下风向三个点	非甲烷总烃、甲醇、颗 粒物、硫酸雾、硫化氢、 氨、臭气浓度	监测2天,每天3次(恶臭 污染物每天4次)。同步记 录废气量、温度等参数。

表 6-2 废气监测内容及频次

6.1.3 厂界噪声监测

本项目室内噪声源主要为挤出机、注塑机、研磨设备,以及各类泵、风机等运行产生的噪声。噪声监测项目和监测频次见表 6-3。

表 6-3 噪声监测内容及频次

监测位置	监测项目	采样频次
厂界四周	昼夜噪声	1 次/天, 监测 2 天

6.2 环境质量监测

本项目环评批复未要求对环境敏感保护目标进行环境质量监测。

表七 验收监测结果

7.1 验收监测期间生产工况记录

本项目各产品的研发设备和三废治理设施运行基本正常,工况稳定。各监测取样周期内,DA001、DA002、DA003 标杆流量分别平均为 15250m³/h、1545m³/h、10350m³/h,较环评要求负荷分别为 76%、25.8%、79.6%。具体风量负荷详见下表 7.1-1。由于本项目废水纳入产业协同创新服务中心配套污水处理装置统一处理,因此污水站负荷无法准确计算。

日期	排气筒	设计风量 (m³/h)	实际风量 (m³/h)	负荷
	DA001	20000	15200	76.0%
2025年4月15日	DA002	6000	1590	26.5%
	DA003	13000	10400	80.0%
	DA001	20000	15300	76.5%
2025年4月16日	DA002	6000	1500	25.0%
	DA003	13000	10300	79.2%

表 7.1-1 监测期间风量状况表

7.2 验收监测结果

7.2.1 废水监测结果

根据本次验收监测报告,本项目生活污水检测结果详见下表 7.2-1。

采样日期		4月15日							
测点名称		污水扫	非放口						
采样频次	第一次	第二次	第三次	第四次	单位	排放限值	达标情况		
样品性状	无色透明	无色透明	无色透明	无色透明					
pH 值	7.6 (16.1°C)	7.7 (15.3°C)	7.5 (15.6°C)	7.6 (14.8°C)	无量纲	6-9	达标		
化学需氧量	61.4	70.1	59.8	62.8	mg/L	500	达标		
氨氮	0.189	0.834	0.046	0.299	mg/L	35	达标		
总磷	0.04	0.06	0.04	0.02	mg/L	8	达标		
总氮	5.48	5.82	5.65	5.66	mg/L	70	达标		
悬浮物	4	3	4	3	mg/L	400	达标		
石油类	1.33	1.24	1.01	0.87	mg/L	20	达标		
采样日期		4月16日							

表 7.2-1 废水监测结果

测点名称		污水扫	非放口				
采样频次	第一次	第二次	第三次	第四次	单位	排放限值	达标情况
样品性状	无色透明	无色透明	无色透明	无色透明			
pH 值	7.5 (15.2°C)	7.6 (14.8°C)	7.6 (15.6°C)	7.5 (16.1°C)	无量纲	6-9	达标
化学需氧量	49.2	39.4	32.4	38.1	mg/L	500	达标
氨氮	0.582	0.098	0.179	0.360	mg/L	35	达标
总磷	0.02	0.02	0.04	0.13	mg/L	8	达标
总氮	14.4	14.0	14.0	13.5	mg/L	70	达标
悬浮物	5	3	5	4	mg/L	400	达标
石油类	1.13	1.000	0.97	0.85	mg/L	20	达标

根据监测数据可知,本项目污水排放口中pH、COD、SS、石油类排放均满足《污水综合排放标准》(GB8978-1996)中的三级标准要求;NH₃-N、TP均满足《工业企业废水氮、磷污染物间接排放限值》(DB33/887-2013)要求;TN 满足《污水排入城镇下水道水质标准》中B级限值。

7.2.2 废气监测结果

7.2.2.1 有组织废气监测结果

根据本次验收监测报告,本项目有组织废气检测结果详见下列各表。

表 7.2-2 DA001 有组织废气监测结果

	采样日期		4月15日			
	采样点位		环评要求	达标情		
排名	气筒高度(m)		20		限值	况
	采样频次	第一次	第二次	第三次		
标干排	非气流量(m³/h)	1.53×10^4	1.53×10^4	1.49×10^4	-	-
硫酸雾	排放浓度(mg/m³)	0.58	1.13	0.76	45	达标
圳政务	排放速率(kg/h)	0.0089	0.0173	0.011	1.5	达标
甲醇	排放浓度(mg/m³)	7.88	6.26	3.76	190	达标
十	排放速率(kg/h)	0.121	0.0958	0.0560	5.1	达标
臭气	浓度 (无量纲)	131	151	199	2000	达标
酚类化	排放浓度(mg/m³)	< 0.03	< 0.03	< 0.03	14.27	达标
合物	排放速率(kg/h)	<5×10 ⁻⁴	<5×10 ⁻⁴	<4×10 ⁻⁴	0.31	达标
二氯甲	排放浓度(mg/m³)	< 0.3	< 0.3	< 0.3	72.00	达标
烷	排放速率(kg/h)	<5×10 ⁻³	<5×10 ⁻³	<5×10 ⁻³	1.54	达标

非甲烷	排放浓度(mg/m³)	1.13	1.30	1.00	120	达标
总烃	排放速率(kg/h)	0.0173	0.0199	0.0149	10	达标
写世来	排放浓度(mg/m³)	0.04	N.D	0.07	20	达标
氯苯类	排放速率(kg/h)	6×10-4	-	1×10 ⁻³	-	-
对二氯	排放浓度(mg/m³)	< 0.009	< 0.009	< 0.009	-	-
苯	排放速率(kg/h)	<1×10 ⁻⁴	<1×10 ⁻⁴	<1×10 ⁻⁴	-	-
1,1,2,2-	排放浓度(mg/m³)	< 0.003	< 0.003	< 0.003	11.25	达标
四氯乙烷	排放速率(kg/h)	<5×10 ⁻⁵	<5×10 ⁻⁵	<5×10 ⁻⁵	0.24	达标
7 lit	排放浓度(mg/m³)	< 0.2	< 0.2	< 0.2	122.85	达标
乙腈	排放速率(kg/h)	<3×10 ⁻³	<3×10 ⁻³	<3×10 ⁻³	2.63	达标
TT T'A	排放浓度(mg/m³)	0.373	0.149	0.118	49.5	达标
甲酸	排放速率(kg/h)	5.71×10 ⁻³	2.28×10 ⁻³	1.76×10 ⁻³	0.19	达标
→ 平	排放浓度(mg/m³)	<2	<2	<2	317.7	达标
乙醇	排放速率(kg/h)	< 0.03	< 0.03	< 0.03	15.00	达标
	采样日期		4月16日	1		
	采样点位		DA001 出口		环评要求	达标情
排/	气筒高度(m)		20	限值	况	
	采样频次	第一次	第二次	第三次		
标干技	非气流量(m³/h)	1.52×10^4	1.54×10^4	1.53×10^4	-	-
硫酸雾	排放浓度(mg/m³)	1.08	1.03	0.69	45	达标
侧的务	排放速率(kg/h)	0.0164	0.0159	0.011	1.5	达标
甲醇	排放浓度(mg/m³)	4.63	3.75	4.68	190	达标
中時	排放速率(kg/h)	0.0704	0.0578	0.0716	5.1	达标
	臭气浓度	112	173	151	2000	达标
酚类化	排放浓度(mg/m³)	< 0.03	< 0.03	< 0.03	14.27	达标
合物	排放速率(kg/h)	<5×10 ⁻⁴	<5×10 ⁻⁴	<4×10 ⁻⁴	0.31	达标
二氯甲	排放浓度(mg/m³)	2.3	1.8	1.6	72.00	达标
烷	排放速率(kg/h)	0.035	0.028	0.024	1.54	达标
非甲烷	排放浓度(mg/m³)	1.06	1.19	0.99	120	达标
总烃	排放速率(kg/h)	0.0161	0.0183	0.015	10	达标
写	排放浓度(mg/m³)	N.D	N.D	N.D	20	达标
氯苯类	排放速率(kg/h)	-	-	-	-	-
对二氯	排放浓度(mg/m³)	< 0.009	< 0.009	< 0.009	-	-

苯	排放速率(kg/h)	$< 1 \times 10^{-4}$	$< 1 \times 10^{-4}$	$< 1 \times 10^{-4}$	-	-
1,1,2,2-	排放浓度(mg/m³)	< 0.003	< 0.003	< 0.003	11.25	达标
四氯乙烷	排放速率(kg/h)	<5×10 ⁻⁵	<5×10 ⁻⁵	<5×10 ⁻⁵	0.24	达标
乙腈	排放浓度(mg/m³)	< 0.2	< 0.2	< 0.2	122.85	达标
	排放速率(kg/h)	$< 3 \times 10^{-3}$	$< 3 \times 10^{-3}$	$< 3 \times 10^{-3}$	2.63	达标
田形	排放浓度(mg/m³)	0.188	0.262	0.241	49.5	达标
甲酸	排放速率(kg/h)	2.86×10 ⁻³	4.03×10 ⁻³	3.69×10 ⁻³	0.19	达标
フ 邢戸	排放浓度(mg/m³)	<2	<2	<2	317.7	达标
乙醇	排放速率(kg/h)	< 0.03	< 0.03	< 0.03	15.00	达标

表 7.2-3 DA002 有组织废气监测结果

	采样日期		4月15日			
	采样点位		环评要求	达标情		
排件	气筒高度 (m)		20		限值	况
	采样频次	第一次	第二次	第三次		
标干技	非气流量(m³/h)	1.59×10^{3}	1.61×10^{3}	1.56×10^{3}	-	-
颗粒物	排放浓度(mg/m³)	< 0.6	< 0.6	< 0.6	120	达标
木灰木立 1/2J	排放速率(kg/h)	$< 1 \times 10^{-3}$	$<1\times10^{-3}$	<9×10 ⁻⁴	3.5	达标
	采样日期		4月16日			
	采样点位		DA002 出口	环评要求	达标情	
排	气筒高度(m)		限值	况		
	采样频次	第一次	第二次	第三次		
标干技	非气流量(m³/h)	1.50×10^4	1.50×10^4	1.50×10^{4}	-	-
颗粒物	排放浓度(mg/m³)	< 0.6	< 0.6	< 0.6	120	达标
林火化工机	排放速率(kg/h)	<9×10 ⁻⁴	<9×10 ⁻⁴	<9×10 ⁻⁴	3.5	达标

表 7.2-4 DA003 有组织废气监测结果

	采样日期		-	-		
	采样点位		-	-		
	采样频次	第一次	第二次	第三次	-	-
标干技	标干排气流量(m³/h)		1.04×10^4	1.03×10^{4}	-	-
非甲烷	进口浓度(mg/m³)	1.37	1.41	1.41	-	-
总烃	进口速率(kg/h)	0.0141	0.0147	0.0145	-	-
	采样点位		环评要求	达标情		
排生	气筒高度 (m)		20		限值	况

采样频次		第一次	第二次	第三次		
标干技	非气流量(m³/h)	1.06×10^4	1.04×10^4	1.06×10^4	-	-
非甲烷	排放浓度(mg/m³)	0.70	0.49	0.66	120	达标
总烃	排放速率(kg/h)	7.4×10^{-3}	5.1×10 ⁻³	7.0×10 ⁻³	10	达标
	采样日期		4月16日	ı	-	-
	采样点位		DA003 进口		-	-
采样频次		第一次	第二次	第三次	-	-
标干拍	非气流量(m³/h)	1.01×10^4	1.01×10^4	1.00×10^{4}	-	-
非甲烷	进口浓度(mg/m³)	1.42	1.65	1.51	-	-
总烃	进口速率(kg/h)	0.0143	0.0167	0.0151	-	-
	采样点位		DA003 出口			
排	气筒高度(m)		20		环评要求 限值	达标情 况
	采样频次	第一次	第二次	第三次	PK IEL	7/4
标干技	标干排气流量(m³/h)		1.07×10^4	9.82×10^{3}	-	-
非甲烷	排放浓度(mg/m³)	0.65	0.65	0.68	120	达标
总烃	排放速率(kg/h)	7.2×10 ⁻³	7.0×10 ⁻³	6.7×10 ⁻³	10	达标

根据监测数据可知,本项目 DA001 甲醇、硫酸雾、非甲烷总烃排放均满足《大气污染物综合排放标准》(GB16297-1996)表 2 中二级标准; 氯苯类排放满足《合成树脂工业污染物排放标准》(GB31572-2015)表 5 标准; 乙醇、甲酸、酚类化合物、四氯甲烷、二氯甲烷、乙腈排放均满足环评中根据《制定地方大气污染物排放标准的技术方法》(GB/T3840-91)确定的排放限值。DA002 颗粒物排放满足《大气污染物综合排放标准》(GB16297-1996)表 2 中二级标准。DA003 非甲烷总烃排放满足《大气污染物综合排放标准》 放标准》(GB16297-1996)表 2 中二级标准。

7.2.2.2 无组织废气监测结果

根据本次验收监测报告,本项目无组织废气监测结果见下表 7.2-5。

表 7.2-5 无组织废气监测结果 单位: mg/m3

采样日	检测项	采样频		检测	环评要	达标情		
期	目	次	上风向	下风向1	下风向 2	下风向3	求限值	况
	非甲烷	第一次	0.66	1.13	1.10	1.22		
	# 中	第二次	0.54	1.03	1.22	1.17	4.0	达标
4月15	心灶	第三次	0.66	1.17	1.32	1.38		
日		第一次	<2	<2	<2	<2		
	甲醇	第二次	<2	<2	<2	<2	12	达标
		第三次	<2	<2	<2	<2		

	property lists and de	第一次	0.208	0.291	0.307	0.273		\ \.
	颗粒物	第二次	0.195	0.332	0.303	0.308	1.0	达标
		第三次	0.223	0.281	0.351	0.300		
		第一次	0.005	< 0.003	< 0.003	< 0.003		
	硫酸雾	第二次	< 0.003	< 0.003	0.003	< 0.003	1.2	达标
		第三次	< 0.003	0.003	< 0.003	< 0.003		
		第一次	< 0.001	0.002	0.002	< 0.001		
	硫化氢	第二次	< 0.001	< 0.001	< 0.001	0.004	0.06	· 达标
	1916 63 124	第三次	< 0.001	0.002	0.003	0.002	0.00	,C 43.
		第四次	< 0.001	< 0.001	0.002	0.001		
		第一次	< 0.01	0.03	0.04	0.02		
	氨	第二次	0.01	0.02	0.04	0.03	1.5	 达标
	女(第三次	0.02	0.03	0.03	0.04	1.5	2210
		第四次	< 0.01	0.02	0.03	0.03		
		第一次	12	16	13	15		
	臭气浓	第二次	<10	14	17	17	20	
	度	第三次	<10	15	14	18	20	
		第四次	10	13	15	16		
采样日	检测项	采样频		检测	结果		环评要	达标情
期	目	次	上风向	下风向1	下风向 2	下风向3	求限值	况
	北田 12	第一次	0.69	1.39	1.11	1.14		
	非甲烷 总烃	第二次	0.63	1.31	1.35	1.23	4.0	达标
	10.71	第三次	0.72	1.15	1.25	1.35		
	甲醇	第一次	<2	<2	<2	<2		
		第二次	<2	<2	<2	<2	12	达标
		第三次	<2	<2	<2	<2		
		第一次	0.186	0.274	0.298	0.364		达标
	颗粒物	第二次	0.204	0.355	0.328	0.281	1.0	
		第三次	0.219	0.273	0.263	0.373		
		第一次	< 0.003	< 0.003	< 0.003	< 0.003		
4日16	硫酸雾	第二次	< 0.003	< 0.003	0.006	< 0.003	1.2	达标
4月16		第三次	< 0.003	0.004	0.004	0.002		
日		第一次	< 0.001	0.002	0.004	0.001		
	水儿层	第二次	< 0.001	< 0.001	0.001	0.003	0.06	<u> </u>
	硫化氢	第三次	0.001	0.001	0.002	0.002	0.06	达标
		第四次	< 0.001	< 0.001	0.003	< 0.001		
		第一次	< 0.01	0.03	0.01	0.04		
	与 与	第二次	< 0.01	0.04	0.02	0.02	1.5	71.1
	氨	第三次	< 0.01	0.02	0.03	0.02	1.5	达标
		第四次	0.01	0.02	0.02	0.05		
	白石壮	第一次	<10	14	17	14		
	臭气浓	第二次	10	15	13	18	20	
	度	第三次	11	16	14	17		

第四次 11 13 17 16

根据监测数据可知,本项目厂界四周颗粒物、甲醇、非甲烷总烃、硫酸雾均满足《大气污染物综合排放标准》(GB16297-1996)表 2 中的二级标准,厂界四周硫化氢、氨、臭气浓度均满足《恶臭污染物排放标准》(GB14554-93)中相应的二级标准值。

7.2.3 噪声

根据本次验收监测报告,本项目厂界噪声监测结果详见表 7.2-6。

采样日期 4月15日 4月16日 《工业企业厂界环 昼间 昼间 境噪声排放标准》 达标情况 测点位 主要 (15:55~16:10) (16:02~16:22) (GB12348-2008) 置 声源 $L_{\sf eq}$ $L_{\sf eq}$ 生产 厂界1 63 63 65 达标 噪声 生产 厂界 2 63 62 65 达标 噪声 生产 达标 厂界 3 61 62 65 噪声 生产 厂界4 59 59 65 达标 噪声 采样日期 4月15日 4月16日 《工业企业厂界环 夜间 夜间 境噪声排放标准》 达标情况 测点位 主要 (22:00~22:15) (22:00~22:14) (GB12348-2008) 声源 置 $L_{\sf eq}$ L_{max} $L_{\sf eq}$ L_{max} 生产 厂界1 50 50 54 达标 56 55 噪声 生产 厂界2 50 53 54 52 55 达标 噪声 生产 厂界3 49 55 56 48 55 达标 噪声 生产 厂界4 46 51 45 55 达标 52 噪声

表 7.2-6 企业厂界噪声监测结果一览表 单位: dB(A)

根据上表监测结果可知,本项目厂界四周噪声排放能够达到《工业企业厂界环境噪声排放标准》(GB12348-2008)中的 3 类标准(昼间≤65dB,夜间≤55dB)。

7.2.4 固 (液) 体废弃物

本项目一般固体废物主要有造粒及注塑边角料、收集粉尘、普通废包装材料;危险固体废物主要有有机废液、废活性炭、沾有化学品的包装材料、废机油。

本项目设有面积约 15 平方米的危险废物储存间,危险废物储存间防风、防雨、防晒,地面硬化处理,标志标识和危险废物管理制度上墙。项目一般工业固废在一般固废仓库暂存,一般固废委托物资单位回收处置。有机废液委托浙江春晖固废处置有限公司

处置;废活性炭委托浙江新和成药业有限公司处置;沾有化学品的包装材料委托浙江育 隆环保科技有限公司处置;废机油委托杭州大地海洋环保股份有限公司处置。

调试期间固体废物实际产生与环评阶段对比情况见表 7.2-7。

调试期间产 产品/ 环评预测 折算达产产 固废名称 产生工序 形态 主要成分 工段 产生量(t/a) 生量(t/a) 生量(t/a) 乙醇、NMP 有机废液 化学反应 液态 6 2 4 等 造粒及注 造粒、注塑 PPS 等 7 3 固态 6 塑边角料 收集粉尘 废气处理 固态 PPS 等 0.05 0.01 0.02 活性炭、有机 废活性炭 废气处理 固态 2.0 0.6 1.2 溶剂等 实验 室 普通废包 原料使用 固态 塑料、纸等 2 1 2 装材料 塑料、玻璃、 沾有化学品 原料使用 固态 10 2 4 的包装材料 有机溶剂等 设备维护 废机油 液态 矿物油等 0.5 0.1 0.2 及检修 生活垃圾 员工生活 纸等 固态 37.5 15 30

表 7.2-7 调试期间固废实际产生与环评阶段对比情况

7.3 污染物总量控制

根据《浙江新和成特种材料有限公司新和成新材料研究院项目环境影响登记表》及 其备案表(虞环建备[2021]18 号)。项目污染物外排环境量控制值为:废水量 11100 吨/年、 COD0.888 吨/年、氨氮 0.167 吨/年、烟(粉)尘 0.008 吨/年、VOCs0.039 吨/年。

根据监测结果,COD、氨氮平均浓度分别为 51.675mg/L、0.323mg/L,污水厂排环境计算总量浓度分别为 80mg/L、15mg/L,项目水污染物产生及排放情况详见表 7.3-1。

废水量较环评减少较大是因为环评阶段劳动定员 250 人,生活污水产生量 6000t/a,实际劳动定员 70 人,实际生活污水产生量远小于环评量。

	•	•	>1 D -4 -1 4 >14 N4 -		
	污染物名称		审批量	实际排放量	总量控制要求
废水量	t/a		11100	2818	符合
COD	纳管量		7.980	0.146	符合
COD_{cr}	排环境量	t/a	0.888	0.225	符合
NIII NI	纳管量		0.396	0.001	符合
NH ₃ -N	排环境量	t/a	0.167	0.042	符合

表7.3-1 项目水污染物总量核算一览表

由于环评树脂聚合实验和分析检验废气污染物源强分析中的各有机废气排放浓度 极低,存在低于该污染因子检出限的情况,因此,本次验收树脂聚合实验和分析检验废 气的排放口 DA001 采用环评中的计算方法:类比同类型实验室,实验和检验分析过程 中废气污染物产生量一般为其使用量的 20%,实验室及通风橱废气收集效率按 95%,活 性炭对有机废气的处理效率按 90%。具体见下表。

表 7.3-2 聚合实验废气和分析室废气产生及排放情况(DA001)

废气污染物	调试期间 原辅材料 消耗量 (kg/a)	折算全年 消耗量 (kg/a)	年产生量 (kg/a)	废气治 理措施	年排〕 (kg/		排气筒	
NMP	0	/	/		有组织	/		
				_		/		
对二氯苯	0	/	/		五组织 无组织	/		
				_	有组织	1.102		
1-氯萘	29	58	11.6		无组织	0.58		
					有组织	0.76		
六氟异丙醇	20	40	8		无组织	0.4		
-lite well	_	_		-	有组织	0.038		
苯酚	1	2	0.4		无组织	0.02		
四年之於	1	2			有组织	0.038		
四氯乙烷	1	2		17 bl. 111	无组织	0.02		
邻甲酚	1	2		活性炭	有组织	0.038		
46 上即	1	2		吸附处 理	无组织	0.02		
甲酸	1	2		(风	有组织	0.038	排气筒	
丁 取	1	2		0.4	0.1	量:	无组织	0.02
二氯甲烷	4	8	1.6	20000m	有组织	0.152		
	,	0	1.0	$\frac{3}{h}$	无组织	0.08		
乙醇	150	300	60		有组织	5.7		
					无组织	3		
甲醇	20	40	8		有组织	0.76		
				_	无组织	0.4		
乙腈	20	40	8		有组织	0.76		
				-	无组织	0.4		
己二胺	2	4	0.8		有组织 	0.076		
				-	有组织	0.04		
己二酸	20	40	8			0.76		
				-	有组织	0.304		
对苯二甲酸	8	16	3.2		无组织	0.16		

	间苯二甲酸	4	0	1.6		有组织	0.152					
	问本一 中 敀	4	8	0	1.0	1.0	1.0	1.6		无组织	0.08	
		/ /		112.4		有组织	10.678	0.011t/a				
	DA001 合计		112.4 (0.112t/a)	/	无组织	5.62	0.006t/a					
					合计	16.298	0.017t/a					

根据监测结果, DA002 颗粒物和 DA003 非甲烷总烃总量计算结果如下表。

表 7.3-3 项目废气污染物总量控制情况表 (DA002、DA003)

排气筒	废气污染物	排放速率 (kg/h)	年运行时(h)	排放量(t/a)
DA002	颗粒物	0.5×10^{-3}	2400	0.001
DA003	非甲烷总烃	5.1×10 ⁻³	2400	0.012
无组织	颗粒物 ^①	/	2400	0.003
儿组织	非甲烷总烃 ^①	/	2400	0.001
	0.004			
	0.013			

- 注: ①无组织颗粒物排放量取环评值计;
 - ②无组织非甲烷总烃排放量取环评值。

综上,本项目废气总量控制汇总见下表。

表 7.3-4 项目废气污染物总量控制汇总表 单位: t/a

排放源	废气污染物	排放量	审批量	总量控制	
DA001	VOCs	0.011	/	/	
DA002	烟(粉)尘	0.001	/	/	
DA003	VOCs	0.012	/	/	
无组织	烟(粉)尘	0.003	/	/	
儿组织	VOCs	0.007	/	/	
本项目烟(粉)	() 尘合计	0.004	0.008	符合	
本项目 VOC	s 合计	0.030	0.039	符合	

综上所述,本项目废水、废气总量控制符合环评及备案表要求。

表八 验收监测结论

8.1 环保设施处理效率监测结果

8.1.1 废水

项目外排综合废水委托杭州湾产业协同创新中心污水处理站处理,环评批复文件中 未对废水处理设备有处理效率要求。

8.1.2 废气

DA001、DA002 排气筒前的废气防治措施进气口不具备采样条件,未对进气口进行采样监测。因此未计算废气处理效率。

DA003 排气筒进出口浓度均较低,满足排放标准要求。

8.2 污染物排放监测结果

8.2.1 废水

根据监测数据结果表明,本项目污水排放口中 pH、COD、SS、石油类排放均满足《污水综合排放标准》(GB8978-1996)中的三级标准要求; NH₃-N、TP 均满足《工业企业废水氮、磷污染物间接排放限值》(DB33/887-2013)要求; TN 满足《污水排入城镇下水道水质标准》中 B 级限值。

8.2.2 废气

根据监测数据结果表明,本项目 DA001 甲醇、硫酸雾、非甲烷总烃排放均满足《大气污染物综合排放标准》(GB16297-1996)表 2 中二级标准; 氯苯类排放满足《合成树脂工业污染物排放标准》(GB31572-2015)表 5 标准; 乙醇、甲酸、酚类化合物、四氯甲烷、二氯甲烷、乙腈排放均满足环评中根据《制定地方大气污染物排放标准的技术方法》(GB/T3840-91)确定的排放限值。DA002 颗粒物排放满足《大气污染物综合排放标准》(GB16297-1996)表 2 中二级标准。DA003 非甲烷总烃排放满足《大气污染物综合排放标准》(GB16297-1996)表 2 中二级标准。本项目厂界四周颗粒物、甲醇、非甲烷总烃、硫酸雾均满足《大气污染物综合排放标准》(GB16297-1996)表 2 中的二级标准,厂界四周硫化氢、氨、臭气浓度均满足《恶臭污染物排放标准》(GB14554-93)中相应的二级标准值。

8.2.3 噪声

根据监测数据结果表明,本项目厂界四周噪声排放能够达到《工业企业厂界环境噪声排放标准》(GB12348-2008)中的 3 类标准(昼间≤65dB,夜间≤55dB)。

8.2.4 固废

本项目一般固体废物主要有造粒及注塑边角料、收集粉尘、普通废包装材料;危险固体废物主要有有机废液、废活性炭、沾有化学品的包装材料、废机油。

本项目设有面积约 15 平方米的危险废物储存间,危险废物储存间防风、防雨、防晒,地面硬化处理,标志标识和危险废物管理制度上墙。项目一般工业固废在一般固废仓库暂存,一般固废委托物资单位回收处置。有机废液委托浙江春晖固废处置有限公司处置;废活性炭委托浙江新和成药业有限公司处置;沾有化学品的包装材料委托浙江育隆环保科技有限公司处置;废机油委托杭州大地海洋环保股份有限公司处置。

8.2.5 污染物总量控制

根据《浙江新和成特种材料有限公司新和成新材料研究院项目环境影响登记表》及 其备案表(虞环建备[2021]18 号)。项目污染物外排环境量控制值为:废水量 11100 吨/年、 COD0.888 吨/年、氨氮 0.167 吨/年、烟(粉)尘 0.008 吨/年、VOCs0.039 吨/年。

项目废水实际排放量为废水量 2818 吨/年、COD_{cr}0.225 吨/年、氨氮 0.042 吨/年,项目排放的废水污染物均在总量控制范围内,能够满足总量控制要求;废气实际排放量为粉尘 0.004 吨/年、VOCs0.030 吨/年,项目排放的废气污染物均在总量控制范围内,能够满足总量控制要求。

8.3 总结论

浙江新和成特种材料有限公司新和成新材料研究院项目在建设中执行了环保"三同时"规定,验收资料基本齐全,项目配套环境保护设施按环评及批复要求建成,污染物各指标排放达到相关标准要求,污染物排放总量符合环评批复要求,符合建设项目环境保护设施竣工验收条件。

8.4 建议

- 1、未来营运期间设备维修保养产生的危险废物加强固废分类堆放和管理,,做好防风、防雨、防晒、防渗漏工作,避免产生二次污染。并及时委托有资质单位进行清运处置。
- 2、进一部完善废气处理设施及固废处置台账,强化风险防范意识,严格落实环境 风险防范措施,定期组织应急演练,杜绝污染事故发生。
- 3、进一步按照公司实际情况制定各项环保管理制度,并切实按照制定的制度开展 各项环保工作。

建设项目竣工环境保护"三同时"验收登记表

填表单位(盖章): 浙江新和成特种材料有限公司填表人(签字): 项目经办人(签字):

建设项目	项目名称		浙江新和成特种材料有限公司新和成新材料研究院项目				项目代码 建设性质		2019-330604-73-03-0530	3052-0 建设地点		浙江省绍兴市上虞区杭州湾上虞经济技 术开发区产业协同创新中心 项目厂区中心			
									図新建□改扩建□技术改造						
	行业类别(分类管	'埋名求)	M7320 工程和技术研究和试验发展									经度/	纬度:	/	
	设计生产能		/						产能力			浙	浙江省环境科技有限公司		
	环评文件审批		绍兴市生态环境局						t文号	虞环建备[2021]18 号	环评文件				
	开工日期	l	2022年3月					竣コ	1日期	2025年3月	排污许可证申	领时间	可 2024年5月14日		4 日
	环保设施设计	·单位	上海瀚广实验实业有限公司					环保设施	越施工单位	上海瀚广实验实业有 限公司 本工程排污许可证编号		/			
	验收单位	:	浙江新和成特种材料有限公司					环保设施监测单位 绍兴市中测检测封 股份有限公司		绍兴市中测检测技术 股份有限公司	验收监测时工况		1		
	投资总概算(7	万元)	6500					环保投资总概算(万元)		55	所占比例(%)		0.85		
	实际总投资(7	万元)			6700			实际环保投资(万元)		100	所占比例(%)		1.49		
	废水治理(万	元)	5	废气治理(万元)	65	噪声治理(7	5元) 20	固体废物	治理(万元)	10	绿化及生态	(万元)	/	其他(万元)	/
	新增废水处理设	:施能力			/			新增废气处	L理设施能力	/	/ 年平均工作时间		2400h		
	运营单位			/			运营单位社会	· 会统一信用代码(或组织机构代码		91330621MAC3TPGQ 2Y	验收时间	间		2025年11月	
污物放标总控(业设目填染排达与量制工建项详)	污染物	J	原有排 放量(1)	本期工程实际排放浓 度(2)	本期工程允 许排放浓度 (3)	本期工程产 生量(4)	本期工程自身 削减量(5)	本期工程实际 排放量(6)	本期工程核定排 放总量(7)	本期工程"以新带老" 削减量(8)	全厂实际排放总量(9)		主排放总 (10)	区域平衡 替代削减 量(11)	排放增减量 (12)
	废水		0	/	/	2818	/	2818	11100	/	2818	11	100	/	2818
	化学需氧	量	0	51.675	500	0.146	/	0.146	7.980	/	0.146	7.9	980	/	0.146
	氨氮		0	0.323	35	0.001	/	0.001	0.396	/	0.001	0.3	396	/	0.001
	石油类	ţ													
	废气														
	二氧化矿	流													
	氮氧化物	物													
	工业粉生	<u></u>	0	< 0.6		0.004	/	0.004	0.008	/	0.004	0.0	008	/	0.004
	烟尘														
	工业固体。	変物													
	与项目有关	VOCs	0	1.06		0.030	/	0.030	0.039	/	0.030	0.0)39	/	0.030
	的其他特征														
	污染物		- \\\ \pi = \\\\\\\\\\\\\\\\\\\\\\\\\\\\\				. 사 /			농수V/문 구시되산호bb			>+. 4 <i>bn</i> +11- ≥- <i>b</i> ->	九庄 京士/	

注: 1、排放增减量: (+)表示增加, (-)表示减少。2、(12)=(6)-(8)-(11), (9)=(4)-(5)-(8)-(11)+(1)。3、计量单位: 废水排放量——万吨/年; 废气排放量——万标立方米/年; 工业固体废物排放量——万吨/年; 水污染物排放浓度——毫克/